Lanthanum Strontium Ferrite
   HOME

TheInfoList



OR:

Lanthanum is a chemical element with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
series, a group of 15 similar elements between lanthanum and lutetium in the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the
rare earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
s. Like most other rare earth elements, the usual oxidation state is +3. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity. Lanthanum usually occurs together with cerium and the other rare earth elements. Lanthanum was first found by the Swedish chemist Carl Gustaf Mosander in 1839 as an impurity in cerium nitrate – hence the name ''lanthanum'', from the Ancient Greek (), meaning 'to lie hidden'. Although it is classified as a rare earth element, lanthanum is the 28th most abundant element in the Earth's crust, almost three times as abundant as lead. In minerals such as monazite and bastnäsite, lanthanum composes about a quarter of the lanthanide content. It is extracted from those minerals by a process of such complexity that pure lanthanum metal was not isolated until 1923. Lanthanum compounds have numerous applications as catalysts, additives in glass, carbon arc lamps for studio lights and projectors, ignition elements in lighters and torches, electron cathodes,
scintillator A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbed ...
s, gas tungsten arc welding electrodes, and other things. Lanthanum carbonate is used as a phosphate binder in cases of high levels of phosphate in the blood seen with kidney failure.


Characteristics


Physical

Lanthanum is the first element and prototype of the lanthanide series. In the periodic table, it appears to the right of the alkaline earth metal
barium Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
and to the left of the lanthanide cerium. Its placement has been disputed, but most who study the matter along with a 2021 IUPAC provisional report consider lanthanum to be best placed as the first of the f-block elements. The 57 electrons of a lanthanum atom are arranged in the
configuration Configuration or configurations may refer to: Computing * Computer configuration or system configuration * Configuration file, a software file used to configure the initial settings for a computer program * Configurator, also known as choice board ...
ed16s2, with three valence electrons outside the noble gas core. In chemical reactions, lanthanum almost always gives up these three valence electrons from the 5d and 6s subshells to form the +3 oxidation state, achieving the stable configuration of the preceding noble gas xenon.Greenwood and Earnshaw, p. 1106 Some lanthanum(II) compounds are also known, but they are much less stable. Among the lanthanides, lanthanum is exceptional as it has no 4f electrons as a single gas-phase atom. Thus it is only very weakly paramagnetic, unlike the strongly paramagnetic later lanthanides (with the exceptions of the last two, ytterbium and lutetium, where the 4f shell is completely full). However, the 4f shell of lanthanum can become partially occupied in chemical environments and participate in chemical bonding. For example, the melting points of the trivalent lanthanides (all but
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
and ytterbium) are related to the extent of hybridisation of the 6s, 5d, and 4f electrons (lowering with increasing 4f involvement), and lanthanum has the second-lowest melting point among them: 920 °C. (Europium and ytterbium have lower melting points because they delocalise about two electrons per atom rather than three.) This chemical availability of f orbitals justifies lanthanum's placement in the f-block despite its anomalous ground-state configuration (which is merely the result of strong interelectronic repulsion making it less profitable to occupy the 4f shell, as it is small and close to the core electrons). The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm.Greenwood and Earnshaw, p. 1429 Lanthanum is the least volatile of the lanthanides. Like most of the lanthanides, lanthanum has a hexagonal crystal structure at room temperature. At 310 °C, lanthanum changes to a face-centered cubic structure, and at 865 °C, it changes to a body-centered cubic structure.


Chemical

As expected from periodic trends, lanthanum has the largest atomic radius of the lanthanides. Hence, it is the most reactive among them, tarnishing quite rapidly in air, turning completely dark after several hours and can readily burn to form lanthanum(III) oxide, La2O3, which is almost as
basic BASIC (Beginners' All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College ...
as calcium oxide.Greenwood and Earnshaw, p. 1105–7 A centimeter-sized sample of lanthanum will corrode completely in a year as its oxide spalls off like iron rust, instead of forming a protective oxide coating like aluminium, scandium, yttrium, and lutetium. Lanthanum reacts with the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s at room temperature to form the trihalides, and upon warming will form binary compounds with the nonmetals nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic. Lanthanum reacts slowly with water to form lanthanum(III) hydroxide, La(OH)3. In dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
, lanthanum readily forms the aquated tripositive ion : this is colorless in aqueous solution since La3+ has no d or f electrons. Lanthanum is the strongest and hardest base among the
rare earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
s, which is again expected from its being the largest of them.Greenwood and Earnshaw, p. 1434 Some lanthanum(II) compounds are also known, but they are much less stable. Therefore, in officially naming compounds of lanthanum its oxidation number always is to be mentioned.


Isotopes

Naturally occurring lanthanum is made up of two isotopes, the stable 139La and the primordial long-lived radioisotope 138La. 139La is by far the most abundant, making up 99.910% of natural lanthanum: it is produced in the
s-process The slow neutron-capture process, or ''s''-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynthesis) of approximat ...
(slow neutron capture, which occurs in low- to medium-mass stars) and the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
(rapid neutron capture, which occurs in core-collapse
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e). It is the only stable isotope of lanthanum. The very rare isotope 138La is one of the few primordial odd–odd nuclei, with a long half-life of 1.05×1011 years. It is one of the proton-rich p-nuclei which cannot be produced in the s- or
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
es. 138La, along with the even rarer 180mTa, is produced in the ν-process, where neutrinos interact with stable nuclei. All other lanthanum isotopes are
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to: Science * Synthetic chemical or compound, produced by the process of chemical synthesis * Synthetic o ...
: with the exception of 137La with a half-life of about 60,000 years, all of them have half-lives less than a day, and most have half-lives less than a minute. The isotopes 139La and 140La occur as
fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s of uranium.


Compounds

Lanthanum oxide is a white solid that can be prepared by direct reaction of its constituent elements. Due to the large size of the La3+ ion, La2O3 adopts a hexagonal 7-coordinate structure that changes to the 6-coordinate structure of scandium oxide (Sc2O3) and yttrium oxide (Y2O3) at high temperature. When it reacts with water,
lanthanum hydroxide Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lant ...
is formed: a lot of heat is evolved in the reaction and a hissing sound is heard. Lanthanum hydroxide will react with atmospheric carbon dioxide to form the basic carbonate.Greenwood and Earnshaw, p. 1107–8
Lanthanum fluoride Lanthanum trifluoride is a refractory ionic compound of lanthanum and fluorine. The LaF3 structure Bonding is ionic with lanthanum highly coordinated. The cation sits at the center of a trigonal prism. Nine fluorine atoms are close: three a ...
is insoluble in water and can be used as a
qualitative Qualitative descriptions or distinctions are based on some quality or characteristic rather than on some quantity or measured value. Qualitative may also refer to: *Qualitative property, a property that can be observed but not measured numericall ...
test for the presence of La3+. The heavier halides are all very soluble deliquescent compounds. The anhydrous halides are produced by direct reaction of their elements, as heating the hydrates causes hydrolysis: for example, heating hydrated LaCl3 produces LaOCl. Lanthanum reacts exothermically with hydrogen to produce the dihydride LaH2, a black, pyrophoric, brittle, conducting compound with the calcium fluoride structure. This is a non-stoichiometric compound, and further absorption of hydrogen is possible, with a concomitant loss of electrical conductivity, until the more salt-like LaH3 is reached. Like LaI2 and LaI, LaH2 is probably an electride compound. Due to the large ionic radius and great electropositivity of La3+, there is not much covalent contribution to its bonding and hence it has a limited
coordination chemistry A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
, like yttrium and the other lanthanides.Greenwood and Earnshaw, pp. 1108–9 Lanthanum oxalate does not dissolve very much in alkali-metal oxalate solutions, and a(acac)3(H2O)2decomposes around 500 °C. Oxygen is the most common
donor atom A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
in lanthanum complexes, which are mostly ionic and often have high coordination numbers over 6: 8 is the most characteristic, forming square antiprismatic and
dodecadeltahedral In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vert ...
structures. These high-coordinate species, reaching up to coordination number 12 with the use of
chelating ligand Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
s such as in La2(SO4)3·9H2O, often have a low degree of symmetry because of stereo-chemical factors. Lanthanum chemistry tends not to involve π bonding due to the electron configuration of the element: thus its organometallic chemistry is quite limited. The best characterized organolanthanum compounds are the cyclopentadienyl complex La(C5H5)3, which is produced by reacting anhydrous LaCl3 with NaC5H5 in tetrahydrofuran, and its methyl-substituted derivatives.Greenwood and Earnshaw, p. 1110


History

In 1751, the Swedish mineralogist Axel Fredrik Cronstedt discovered a heavy mineral from the mine at
Bastnäs Bastnäs ( sv, Bastnäs or ) is an ore field near Riddarhyttan, Västmanland, Sweden. The mines in Bastnäs were earliest mentioned in 1692. Iron, copper and rare-earth elements were extracted from the mines and 4,500 tons of cerium was produced be ...
, later named cerite. Thirty years later, the fifteen-year-old Wilhelm Hisinger, from the family owning the mine, sent a sample of it to Carl Scheele, who did not find any new elements within. In 1803, after Hisinger had become an ironmaster, he returned to the mineral with
Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; by himself and his contemporaries named only Jacob Berzelius, 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be on ...
and isolated a new oxide which they named ''ceria'' after the dwarf planet Ceres, which had been discovered two years earlier. Ceria was simultaneously independently isolated in Germany by Martin Heinrich Klaproth.Greenwood and Earnshaw, p. 1424 Between 1839 and 1843, ceria was shown to be a mixture of oxides by the Swedish surgeon and chemist Carl Gustaf Mosander, who lived in the same house as Berzelius and studied under him: he separated out two other oxides which he named ''lanthana'' and '' didymia''. He partially decomposed a sample of cerium nitrate by roasting it in air and then treating the resulting oxide with dilute nitric acid. That same year, Axel Erdmann, a student also at the Karolinska Institute, discovered lanthanum in a new mineral from Låven island located in a Norwegian fjord. Finally, Mosander explained his delay, saying that he had extracted a second element from cerium, and this he called didymium. Although he didn't realise it, didymium too was a mixture, and in 1885 it was separated into praseodymium and neodymium. Since lanthanum's properties differed only slightly from those of cerium, and occurred along with it in its salts, he named it from the Ancient Greek ''λανθάνειν'' anthanein(lit. ''to lie hidden''). Relatively pure lanthanum metal was first isolated in 1923.


Occurrence and production

Lanthanum is the third-most abundant of all the lanthanides, making up 39 mg/kg of the Earth's crust, behind neodymium at 41.5 mg/kg and cerium at 66.5 mg/kg. It is almost three times as abundant as lead in the Earth's crust. Despite being among the so-called "rare earth metals", lanthanum is thus not rare at all, but it is historically so named because it is rarer than "common earths" such as lime and magnesia, and historically only a few deposits were known. Lanthanum is considered a rare earth metal because the process to mine it is difficult, time-consuming, and expensive. Lanthanum is rarely the dominant lanthanide found in the rare earth minerals, and in their chemical formulae it is usually preceded by cerium. Rare examples of La-dominant minerals are monazite-(La) and lanthanite-(La). The La3+ ion is similarly sized to the early lanthanides of the cerium group (those up to samarium and
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
) that immediately follow in the periodic table, and hence it tends to occur along with them in phosphate,
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
and carbonate minerals, such as monazite (MIIIPO4) and bastnäsite (MIIICO3F), where M refers to all the rare earth metals except scandium and the radioactive
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
(mostly Ce, La, and Y).Greenwood and Earnshaw, p. 1103 Bastnäsite is usually lacking in thorium and the heavy lanthanides, and the purification of the light lanthanides from it is less involved. The ore, after being crushed and ground, is first treated with hot concentrated sulfuric acid, evolving carbon dioxide,
hydrogen fluoride Hydrogen fluoride (fluorane) is an inorganic compound with the chemical formula . This colorless gas or liquid is the principal industrial source of fluorine, often as an aqueous solution called hydrofluoric acid. It is an important feedstock i ...
, and silicon tetrafluoride: the product is then dried and leached with water, leaving the early lanthanide ions, including lanthanum, in solution.Greenwood and Earnshaw, p. 1426–9 The procedure for monazite, which usually contains all the rare earths as well as thorium, is more involved. Monazite, because of its magnetic properties, can be separated by repeated electromagnetic separation. After separation, it is treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that, the solution is treated with ammonium oxalate to convert rare earths to their insoluble oxalates. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO3. Lanthanum is separated as a double salt with ammonium nitrate by crystallization. This salt is relatively less soluble than other rare earth double salts and therefore stays in the residue. Care must be taken when handling some of the residues as they contain 228Ra, the daughter of 232Th, which is a strong gamma emitter. Lanthanum is relatively easy to extract as it has only one neighbouring lanthanide, cerium, which can be removed by making use of its ability to be oxidised to the +4 state; thereafter, lanthanum may be separated out by the historical method of
fractional crystallization Fractional crystallization may refer to: * Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the ...
of La(NO3)3·2NH4NO3·4H2O, or by
ion-exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
techniques when higher purity is desired. Lanthanum metal is obtained from its oxide by heating it with ammonium chloride or fluoride and hydrofluoric acid at 300-400 °C to produce the chloride or fluoride: :La2O3 + 6 NH4Cl → 2 LaCl3 + 6 NH3 + 3 H2O This is followed by reduction with alkali or alkaline earth metals in vacuum or argon atmosphere: :LaCl3 + 3 Li → La + 3 LiCl Also, pure lanthanum can be produced by electrolysis of molten mixture of anhydrous LaCl3 and NaCl or KCl at elevated temperatures.


Applications

The first historical application of lanthanum was in gas lantern mantles. Carl Auer von Welsbach used a mixture of lanthanum oxide and zirconium oxide, which he called ''Actinophor'' and patented in 1886. The original mantles gave a green-tinted light and were not very successful, and his first company, which established a factory in Atzgersdorf in 1887, failed in 1889. Modern uses of lanthanum include: * One material used for anodic material of nickel-metal hydride batteries is . Due to high cost to extract the other lanthanides, a mischmetal with more than 50% of lanthanum is used instead of pure lanthanum. The compound is an intermetallic component of the type. NiMH batteries can be found in many models of the Toyota Prius sold in the US. These larger nickel-metal hydride batteries require massive quantities of lanthanum for the production. The 2008 Toyota Prius NiMH battery requires of lanthanum. As engineers push the technology to increase fuel efficiency, twice that amount of lanthanum could be required per vehicle. * Hydrogen sponge alloys can contain lanthanum. These alloys are capable of storing up to 400 times their own volume of hydrogen gas in a reversible adsorption process. Heat energy is released every time they do so; therefore these alloys have possibilities in energy conservation systems. * Mischmetal, a pyrophoric alloy used in lighter flints, contains 25% to 45% lanthanum. * Lanthanum oxide and the boride are used in electronic vacuum tubes as hot cathode materials with strong emissivity of electrons. Crystals of are used in high-brightness, extended-life, thermionic electron emission sources for electron microscopes and Hall-effect thrusters. * Lanthanum trifluoride () is an essential component of a heavy fluoride glass named ZBLAN. This glass has superior transmittance in the infrared range and is therefore used for fiber-optical communication systems. * Cerium-doped lanthanum bromide and
lanthanum chloride Lanthanum chloride is the inorganic compound with the formula La Cl3. It is a common salt of lanthanum which is mainly used in research. It is a white solid that is highly soluble in water and alcohols. Preparation Anhydrous lanthanum(III) chlo ...
are the recent inorganic
scintillator A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the absorbed ...
s, which have a combination of high light yield, best energy resolution, and fast response. Their high yield converts into superior energy resolution; moreover, the light output is very stable and quite high over a very wide range of temperatures, making it particularly attractive for high-temperature applications. These scintillators are already widely used commercially in detectors of
neutrons The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
or gamma rays. * Carbon arc lamps use a mixture of rare earth elements to improve the light quality. This application, especially by the
motion picture A film also called a movie, motion picture, moving picture, picture, photoplay or (slang) flick is a work of visual art that simulates experiences and otherwise communicates ideas, stories, perceptions, feelings, beauty, or atmosphere ...
industry for studio lighting and projection, consumed about 25% of the rare-earth compounds produced until the phase out of carbon arc lamps. * Lanthanum(III) oxide () improves the alkali resistance of glass and is used in making special optical glasses, such as infrared-absorbing glass, as well as camera and telescope
lenses A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements ...
, because of the high refractive index and low dispersion of rare-earth glasses. Lanthanum oxide is also used as a grain-growth additive during the liquid-phase sintering of silicon nitride and zirconium diboride. * Small amounts of lanthanum added to
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
improves its
malleability Ductility is a List of materials properties, mechanical property commonly described as a material's amenability to Drawing (manufacturing), drawing (e.g. into wire). In materials science, ductility is defined by the degree to which a materia ...
, resistance to impact, and ductility, whereas addition of lanthanum to
molybdenum Molybdenum is a chemical element with the symbol Mo and atomic number 42 which is located in period 5 and group 6. The name is from Neo-Latin ''molybdaenum'', which is based on Ancient Greek ', meaning lead, since its ores were confused with lea ...
decreases its hardness and sensitivity to temperature variations. * Small amounts of lanthanum are present in many pool products to remove the phosphates that feed algae. * Lanthanum oxide additive to tungsten is used in gas tungsten arc welding electrodes, as a substitute for radioactive thorium. * Various compounds of lanthanum and other rare-earth elements (oxides, chlorides, etc.) are components of various catalysis, such as petroleum cracking catalysts. * Lanthanum-barium radiometric dating is used to estimate age of rocks and ores, though the technique has limited popularity. * Lanthanum carbonate was approved as a medication (Fosrenol,
Shire Pharmaceuticals Shire plc was a UK-founded Jersey-registered specialty biopharmaceutical company. Originating in the United Kingdom with an operational base in the United States, its brands and products included Vyvanse, Lialda, and Adderall XR. Shire was ac ...
) to absorb excess phosphate in cases of hyperphosphatemia seen in end-stage kidney disease. * Lanthanum fluoride is used in phosphor lamp coatings. Mixed with europium fluoride, it is also applied in the crystal membrane of fluoride ion-selective electrodes. * Like
horseradish peroxidase The enzyme horseradish peroxidase (HRP), found in the roots of horseradish, is used extensively in biochemistry applications. It is a metalloenzyme with many isoforms, of which the most studied type is C. It catalyzes the oxidation of various or ...
, lanthanum is used as an electron-dense tracer in molecular biology. * Lanthanum-modified bentonite (or
phoslock Phoslock is the commercial name for a bentonite clay in which the sodium and/or calcium ions are exchanged for lanthanum. The lanthanum contained within Phoslock reacts with phosphate to form an inert mineral known as rhabdophane (LaPO4.\mathitH2O). ...
) is used to remove phosphates from water in lake treatments. * Lanthanum telluride (La3Te4) is considered to be applied in the field of radioisotope power system (nuclear power plant) due to its significant conversion capabilities. The transmuted elements and isotopes in the segment will not react with the material itself, thus presenting no harm to the safety of the power plant. Though iodine, which can be generated during transmutation, is suspected to react with La3Te4 segment, the quantity of iodine is small enough to possess threat to the power system.


Biological role

Lanthanum has no known biological role in humans. The element is very poorly absorbed after oral administration and when injected its elimination is very slow. Lanthanum carbonate (Fosrenol) was approved as a phosphate binder to absorb excess phosphate in cases of
end stage renal disease Kidney failure, also known as end-stage kidney disease, is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels. Kidney failure is classified as eit ...
. While lanthanum has pharmacological effects on several receptors and ion channels, its specificity for the GABA receptor is unique among trivalent cations. Lanthanum acts at the same modulatory site on the GABA receptor as zinc, a known negative
allosteric In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site. The site to which the effector binds is termed the ''allosteric site ...
modulator. The lanthanum cation La3+ is a positive allosteric modulator at native and recombinant GABA receptors, increasing open channel time and decreasing desensitization in a subunit configuration dependent manner. Lanthanum is an essential cofactor for the methanol dehydrogenase of the methanotrophic bacterium ''
Methylacidiphilum fumariolicum ''Methylacidiphilum fumariolicum '' is an autotrophic bacterium first described in 2007 growing on volcanic pools near Naples, Italy. It grows in mud at temperatures between 50 °C and 60 °C and an acidic pH of 2–5. It is able to oxi ...
'' SolV, although the great chemical similarity of the lanthanides means that it may be substituted with cerium, praseodymium, or neodymium without ill effects, and with the smaller samarium, europium, or gadolinium giving no side effects other than slower growth.


Precautions

Lanthanum has a low to moderate level of toxicity and should be handled with care. The injection of lanthanum solutions produces
hyperglycemia Hyperglycemia is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1 mmol/L (200  mg/dL), but symptoms may not start to become noticeable until even ...
, low blood pressure, degeneration of the spleen and hepatic alterations. The application in carbon arc light led to the exposure of people to rare earth element oxides and fluorides, which sometimes led to
pneumoconiosis Pneumoconiosis is the general term for a class of interstitial lung disease where inhalation of dust ( for example, ash dust, lead particles, pollen grains etc) has caused interstitial fibrosis. The three most common types are asbestosis, silicos ...
. As the La3+ ion is similar in size to the Ca2+ ion, it is sometimes used as an easily traced substitute for the latter in medical studies. Lanthanum, like the other lanthanides, is known to affect human metabolism, lowering cholesterol levels, blood pressure, appetite, and risk of blood coagulation. When injected into the brain, it acts as a painkiller, similarly to morphine and other opiates, though the mechanism behind this is still unknown.


Prices

The price for a (metric) ton 000 kgof ''Lanthanum oxide 99% (FOB China in USD/Mt)'' is given by the Institute of Rare Earths Elements and Strategic Metals as below $2,000 for most of the period from early 2001 to September 2010 (at $10,000 in the short term in 2008); it rose steeply to $140,000 in mid-2011 and fell back just as rapidly to $38,000 by early 2012. The average price for the last six months (April to September 2022) is given by the Institute as follows: ''Lanthanum Oxide - 99.9%min FOB China - 1308 EUR/mt'' and for ''Lanthanum Metal - 99%min FOB China - 3706 EUR/mt''.Information and notation: .access-date=27 October 2022.


See also

, CASNo_Ref = , CASNo = 7439-91-0 , UNII_Ref = , UNII = 6I3K30563S


References


Bibliography

*


Further reading

* ''The Industrial Chemistry of the Lanthanons, Yttrium, Thorium and Uranium'', by R. J. Callow, Pergamon Press, 1967 * ''Extractive Metallurgy of Rare Earths'', by C. K. Gupta and N. Krishnamurthy, CRC Press, 2005 * ''Nouveau Traite de Chimie Minerale, Vol. VII. Scandium, Yttrium, Elements des Terres Rares, Actinium'', P. Pascal, Editor, Masson & Cie, 1959 * ''Chemistry of the Lanthanons'', by R. C. Vickery, Butterworths 1953 {{Good article Chemical elements Chemical elements with double hexagonal close-packed structure Lanthanides Reducing agents GABAA receptor positive allosteric modulators