Lactate dehydrogenase (LDH or LD) is an
enzyme found in nearly all living cells. LDH catalyzes the conversion of
lactate
Lactate may refer to:
* Lactation, the secretion of milk from the mammary glands
* Lactate, the conjugate base of lactic acid
Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with ...
to
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
and back, as it converts NAD
+ to
NADH and back. A
dehydrogenase is an enzyme that transfers a
hydride from one molecule to another.
LDH exists in four distinct enzyme classes. This article is specifically about the
NAD(P)-dependent
L-lactate dehydrogenase. Other LDHs act on
D-lactate and/or are dependent on
cytochrome c
The cytochrome complex, or cyt ''c'', is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion. It belongs to the cytochrome c family of proteins and plays a major role in cell apoptosis. Cytochrome c is hig ...
:
D-lactate dehydrogenase (cytochrome) and
L-lactate dehydrogenase (cytochrome).
LDH is expressed extensively in body tissues, such as blood cells and heart muscle. Because it is released during tissue damage, it is a marker of common injuries and disease such as heart failure.
Reaction
Lactate dehydrogenase catalyzes the interconversion of
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
and
lactate
Lactate may refer to:
* Lactation, the secretion of milk from the mammary glands
* Lactate, the conjugate base of lactic acid
Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with ...
with concomitant interconversion of NADH and
NAD+. It converts pyruvate, the final product of
glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
, to lactate when oxygen is absent or in short supply, and it performs the reverse reaction during the
Cori cycle in the
liver. At high concentrations of lactate, the enzyme exhibits feedback inhibition, and the rate of conversion of pyruvate to lactate is decreased. It also catalyzes the dehydrogenation of
2-hydroxybutyrate, but this is a much poorer substrate than lactate.
Active site
LDH in humans uses
His(193) as the proton acceptor, and works in unison with the
coenzyme (
Arg
Arg or ARG may refer to:
Places
*''Arg'' () means "citadel" in Persian, and may refer to:
**Arg, Iran, a village in Fars Province, Iran
**Arg (Kabul), presidential palace in Kabul, Afghanistan
**Arg, South Khorasan, a village in South Khorasan P ...
99 and
Asn138), and substrate (Arg106; Arg169;
Thr248) binding residues. The His(193) active site, is not only found in the human form of LDH, but is found in many different animals, showing the convergent evolution of LDH. The two different subunits of LDH (LDHA, also known as the M subunit of LDH, and LDHB, also known as the H subunit of LDH) both retain the same active site and the same amino acids participating in the reaction. The noticeable difference between the two subunits that make up LDH's tertiary structure is the replacement of
alanine (in the M chain) with a
glutamine (in the H chain). This tiny but notable change is believed to be the reason the H subunit can bind NAD faster, and the M subunit's catalytic activity isn't reduced in the presence of acetylpyridine adenine dinucleotide, whereas the H subunit's activity is reduced fivefold.
Isoenzymes
Enzymatically active lactate dehydrogenase is consisting of four subunits (tetramer). The two most common subunits are the LDH-M and LDH-H peptides, named for their discovery in muscle and heart tissue, and encoded by the ''LDHA'' and ''LDHB'' genes, respectively. These two subunits can form five possible tetramers (isoenzymes): LDH-1 (4H), LDH-5 (4M), and the three mixed tetramers (LDH-2/3H1M, LDH-3/2H2M, LDH-4/1H3M). These five isoforms are enzymatically similar but show different tissue distribution.
* LDH-1 (4H)—in the
heart and in RBC (
red blood cells
Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek language, Greek ''erythros'' for "red" and ''k ...
), as well as the
brain
* LDH-2 (3H1M)—in the
reticuloendothelial system
* LDH-3 (2H2M)—in the
lung
The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of t ...
s
* LDH-4 (1H3M)—in the
kidneys,
placenta, and
pancreas
* LDH-5 (4M)—in the
liver and
striated muscle, also present in the
brain
LDH-2 is usually the predominant form in the
serum
Serum may refer to:
*Serum (blood), plasma from which the clotting proteins have been removed
**Antiserum, blood serum with specific antibodies for passive immunity
* Serous fluid, any clear bodily fluid
* Truth serum, a drug that is likely to mak ...
. An LDH-1 level higher than the LDH-2 level (a "flipped pattern") suggests
myocardial infarction (damage to heart tissues releases heart LDH, which is rich in LDH-1, into the bloodstream). The use of this phenomenon to diagnose infarction has been largely superseded by the use of
Troponin I or T measurement.
There are two more mammalian LDH subunits that can be included in LDH tetramers: LDHC and LDHBx. LDHC is a testes-specific LDH protein, that is encoded by the LDHC gene. LDHBx is a
peroxisome
A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen pero ...
-specific LDH protein. LDHBx is the readthrough-form of LDHB. LDHBx is generated by
translation of the LDHB
mRNA, but the
stop codon is interpreted as an
amino acid-encoding
codon
The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
. In consequence,
translation continues to the next stop codon. This leads to the addition of seven amino acid residues to the normal LDH-H protein. The extension contains a
peroxisomal targeting signal, so that LDHBx is imported into the peroxisome.
Protein families
The family also contains L-lactate dehydrogenases that catalyse the conversion of
L-lactate
Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as well as natur ...
to
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
, the last step in anaerobic glycolysis. Malate dehydrogenases that catalyse the interconversion of malate to oxaloacetate and participate in the citric acid cycle, and
L-2-hydroxyisocaproate dehydrogenases are also members of the family. The
N-terminus
The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
is a
Rossmann NAD-binding fold and the
C-terminus
The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
is an unusual alpha+beta fold.
Interactive pathway map
Enzyme regulation
This protein may use the
morpheein
Morpheeins are proteins that can form two or more different homo-oligomers (morpheein forms), but must come apart and change shape to convert between forms. The alternate shape may reassemble to a different oligomer. The shape of the subunit ...
model of
allosteric regulation
In biochemistry, allosteric regulation (or allosteric control) is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.
The site to which the effector binds is termed the ''allosteric site ...
.
Ethanol-induced hypoglycemia
Ethanol is dehydrogenated to acetaldehyde by
alcohol dehydrogenase, and further into
acetic acid
Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main component ...
by
acetaldehyde dehydrogenase. During this reaction 2 NADH are produced. If large amounts of ethanol are present, then large amounts of NADH are produced, leading to a depletion of NAD
+. Thus, the conversion of
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
to lactate is increased due to the associated regeneration of NAD
+. Therefore, anion-gap metabolic acidosis (
lactic acidosis) may ensue in
ethanol poisoning.
The increased NADH/NAD+ ratio also can cause hypoglycemia in an (otherwise) fasting individual who has been drinking and is dependent on gluconeogenesis to maintain blood glucose levels. Alanine and lactate are major gluconeogenic precursors that enter gluconeogenesis as pyruvate. The high NADH/NAD+ ratio shifts the lactate dehydrogenase equilibrium to lactate, so that less pyruvate can be formed and, therefore, gluconeogenesis is impaired.
Substrate regulation
LDH is also regulated by the relative concentrations of its substrates. LDH becomes more active under periods of extreme muscular output due to an increase in substrates for the LDH reaction. When skeletal muscles are pushed to produce high levels of power, the demand for ATP in regards to aerobic ATP supply leads to an accumulation of free ADP, AMP, and Pi. The subsequent glycolytic flux, specifically production of pyruvate, exceeds the capacity for pyruvate dehydrogenase and other shuttle enzymes to metabolize pyruvate. The flux through LDH increases in response to increased levels of pyruvate and NADH to metabolize pyruvate into lactate.
Transcriptional regulation
LDH undergoes transcriptional regulation by PGC-1α. PGC-1α regulates LDH by decreasing LDH A mRNA transcription and the enzymatic activity of pyruvate to lactate conversion.
Genetics
The M and H subunits are encoded by two different
genes:
* The M subunit is encoded by ''LDHA'', located on
chromosome 11p15.4 ().
* The H subunit is encoded by ''LDHB'', located on chromosome 12p12.2-p12.1 ().
* A third isoform, ''LDHC'' or ''LDHX'', is expressed only in the
testis (); its gene is likely a duplicate of ''LDHA'' and is also located on the eleventh chromosome (11p15.5-p15.3).
* The fourth isoform is localized in the
peroxisome
A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen pero ...
. It is tetramer containing one LDHBx subunit, which is also encoded by the ''LDHB'' gene. The LDHBx protein is seven amino acids longer than the LDHB (LDH-H) protein. This amino acid extension is generated by functional translational readthrough.
Mutations of the M subunit have been linked to the rare disease ''exertional
myoglobinuria'' (see OMIM article), and mutations of the H subunit have been described but do not appear to lead to disease.
Mutations
In rare cases, a mutation in the genes controlling the production of lactate dehydrogenase will lead to a medical condition known as lactate dehydrogenase deficiency. Depending on which gene carries the mutation, one of two types will occur: either lactate dehydrogenase-A deficiency (also known as glycogen storage disease XI) or lactate dehydrogenase-B deficiency. Both of these conditions affect how the body breaks down sugars, primarily in certain muscle cells. Lactate dehydrogenase-A deficiency is caused by a mutation to the
LDHA
Lactate dehydrogenase A (LDHA) is an enzyme which in humans is encoded by the ''LDHA'' gene. It is a monomer of Lactate dehydrogenase, which exists as a tetramer. The other main subunit is lactate dehydrogenase B (LDHB).
Function
Lactate deh ...
gene, while lactate dehydrogenase-B deficiency is caused by a mutation to the LDHB gene.
This condition is inherited in an autosomal recessive pattern, meaning that both parents must contribute a mutated gene in order for this condition to be expressed.
A complete lactate dehydrogenase enzyme consists of four
protein subunit
In structural biology, a protein subunit is a polypeptide chain or single protein molecule that assembles (or "''coassembles''") with others to form a protein complex.
Large assemblies of proteins such as viruses often use a small number of ty ...
s. Since the two most common subunits found in lactate dehydrogenase are encoded by the
LDHA
Lactate dehydrogenase A (LDHA) is an enzyme which in humans is encoded by the ''LDHA'' gene. It is a monomer of Lactate dehydrogenase, which exists as a tetramer. The other main subunit is lactate dehydrogenase B (LDHB).
Function
Lactate deh ...
and LDHB genes, either variation of this disease causes abnormalities in many of the lactate dehydrogenase enzymes found in the body. In the case of lactate dehydrogenase-A deficiency, mutations to the LDHA gene result in the production of an abnormal lactate dehydrogenase-A subunit that cannot bind to the other subunits to form the complete
enzyme. This lack of a functional subunit reduces the amount of enzyme formed, leading to an overall decrease in activity. During the anaerobic phase of
glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
(the
Cori Cycle), the mutated enzyme is unable to convert
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
into lactate to produce the extra energy the cells need. Since this subunit has the highest concentration in the LDH enzymes found in the skeletal muscles (which are the primary muscles responsible for movement), high-intensity physical activity will lead to an insufficient amount of energy being produced during this anaerobic phase. This in turn will cause the muscle tissue to weaken and eventually break down, a condition known as
rhabdomyolysis
Rhabdomyolysis (also called rhabdo) is a condition in which damaged skeletal muscle breaks down rapidly. Symptoms may include muscle pains, weakness, vomiting, and confusion. There may be tea-colored urine or an irregular heartbeat. Some of th ...
. The process of rhabdomyolysis also releases
myoglobin
Myoglobin (symbol Mb or MB) is an iron- and oxygen-binding protein found in the cardiac and skeletal muscle tissue of vertebrates in general and in almost all mammals. Myoglobin is distantly related to hemoglobin. Compared to hemoglobin, myoglobi ...
into the blood, which will eventually end up in the urine and cause it to become red or brown: another condition known as
myoglobinuria. Some other common symptoms are exercise intolerance, which consists of fatigue, muscle pain, and cramps during exercise, and skin rashes.
In severe cases, myoglobinuria can damage the kidneys and lead to life-threatening kidney failure. In order to obtain a definitive diagnosis, a muscle biopsy may be performed to confirm low or absent LDH activity. There is currently no specific treatment for this condition.
In the case of lactate dehydrogenase-B deficiency, mutations to the LDHB gene result in the production of an abnormal lactate dehydrogenase-B subunit that cannot bind to the other subunits to form the complete enzyme. As with lactate dehydrogenase-A deficiency, this mutation reduces the overall effectiveness in the enzyme. However, there are some major differences between these two cases. The first is the location where the condition manifests itself. With lactate dehydrogenase-B deficiency, the highest concentration of B subunits can be found within the cardiac muscle, or the heart. Within the heart, lactate dehydrogenase plays the role of converting lactate back into pyruvate so that the pyruvate can be used again to create more energy. With the mutated enzyme, the overall rate of this conversion is decreased. However, unlike lactate dehydrogenase-A deficiency, this mutation does not appear to cause any symptoms or health problems linked to this condition.
At the present moment, it is unclear why this is the case. Affected individuals are usually discovered only when routine blood tests indicate low LDH levels present within the blood.
Role in muscular fatigue
The onset of acidosis during periods of intense exercise is commonly attributed to accumulation of hydrogens that are dissociated from lactate. Previously, lactic acid was thought to cause fatigue. From this reasoning, the idea of lactate production being a primary cause of muscle fatigue during exercise was widely adopted. A closer, mechanistic analysis of lactate production under “anaerobic” conditions shows that there is no biochemical evidence for the production of lactate through LDH contributing to acidosis. While LDH activity is correlated to muscle fatigue,
the production of lactate by means of the LDH complex works as a system to delay the onset of muscle fatigue. George Brooks and Colleagues at UC Berkeley where the lactate shuttle was discovered showed that lactate was actually a metabolic fuel not a waste product or the cause of fatigue.
LDH works to prevent muscular failure and fatigue in multiple ways. The lactate-forming reaction generates cytosolic NAD+, which feeds into the
glyceraldehyde 3-phosphate dehydrogenase
Glyceraldehyde 3-phosphate dehydrogenase (abbreviated GAPDH) () is an enzyme of about 37kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long establishe ...
reaction to help maintain cytosolic redox potential and promote substrate flux through the
second phase of glycolysis to promote ATP generation. This, in effect, provides more energy to contracting muscles under heavy workloads. The production and removal of lactate from the cell also ejects a proton consumed in the LDH reaction- the removal of excess protons produced in the wake of
this fermentation reaction serves to act as a buffer system for muscle acidosis. Once proton accumulation exceeds the rate of uptake in lactate production and removal through the LDH symport,
muscular acidosis occurs.
Blood test
On
blood test
A blood test is a laboratory analysis performed on a blood sample that is usually extracted from a vein in the arm using a hypodermic needle, or via fingerprick. Multiple tests for specific blood components, such as a glucose test or a cholester ...
s, an elevated level of lactate dehydrogenase usually indicates tissue damage, which has multiple potential causes, reflecting its widespread tissue distribution:
*
Hemolytic anemia
*
Vitamin B12 deficiency anemia
Pernicious anemia is a type of vitamin B12 deficiency anemia, a disease in which not enough red blood cells are produced due to the malabsorption of vitamin B12. Malabsorption in pernicious anemia results from the lack or loss of intrinsic ...
[
* Infections such as infectious mononucleosis, ]meningitis
Meningitis is acute or chronic inflammation of the protective membranes covering the brain and spinal cord, collectively called the meninges. The most common symptoms are fever, headache, and neck stiffness. Other symptoms include confusion or ...
, encephalitis
Encephalitis is inflammation of the brain. The severity can be variable with symptoms including reduction or alteration in consciousness, headache, fever, confusion, a stiff neck, and vomiting. Complications may include seizures, hallucinations, ...
, HIV/AIDS. It is notably increased in sepsis.[
* Infarction, such as ]bowel infarction
Bowel infarction or gangrenous bowel represents an irreversible injury to the intestine resulting from insufficient blood flow. It is considered a medical emergency because it can quickly result in life-threatening infection and death. Any cause ...
, myocardial infarction and lung infarction[
*]Acute kidney disease
Acute kidney injury (AKI), previously called acute renal failure (ARF), is a sudden decrease in kidney function that develops within 7 days, as shown by an increase in serum creatinine or a decrease in urine output, or both.
Causes of AKI are cla ...
[
* Acute liver disease][
*]Rhabdomyolysis
Rhabdomyolysis (also called rhabdo) is a condition in which damaged skeletal muscle breaks down rapidly. Symptoms may include muscle pains, weakness, vomiting, and confusion. There may be tea-colored urine or an irregular heartbeat. Some of th ...
* Pancreatitis[
* Bone fractures][
* Cancers, notably testicular cancer and lymphoma. A high LDH after chemotherapy may indicate that it has not been successful.][
*Severe shock][
*]Hypoxia
Hypoxia means a lower than normal level of oxygen, and may refer to:
Reduced or insufficient oxygen
* Hypoxia (environmental), abnormally low oxygen content of the specific environment
* Hypoxia (medical), abnormally low level of oxygen in the tis ...
[
Low and normal levels of LDH do not usually indicate any pathology.][ Low levels may be caused by large intake of vitamin C.
LDH is a protein that normally appears throughout the body in small amounts.
]
Testing in cancer
Many cancers can raise LDH levels, so LDH may be used as a tumor marker, but at the same time, it is not useful in identifying a specific kind of cancer. Measuring LDH levels can be helpful in monitoring treatment for cancer. Noncancerous conditions that can raise LDH levels include heart failure, hypothyroidism, anemia, pre-eclampsia, meningitis, encephalitis, acute pancreatitis, HIV and lung or liver disease.
Tissue breakdown releases LDH, and therefore, LDH can be measured as a surrogate for tissue breakdown (e.g., hemolysis). LDH is measured by the lactate dehydrogenase (LDH) test (also known as the LDH test or lactic acid dehydrogenase test). Comparison of the measured LDH values with the normal range help guide diagnosis.
Hemolysis
In medicine, LDH is often used as a marker of tissue breakdown as LDH is abundant in red blood cells and can function as a marker for hemolysis. A blood sample that has been handled incorrectly can show false-positively high levels of LDH due to erythrocyte damage.
It can also be used as a marker of myocardial infarction. Following a myocardial infarction, levels of LDH peak at 3–4 days and remain elevated for up to 10 days. In this way, elevated levels of LDH (where the level of LDH1 is higher than that of LDH2, i.e. the LDH Flip, as normally, in serum, LDH2 is higher than LDH1) can be useful for determining whether a patient has had a myocardial infarction if they come to doctors several days after an episode of chest pain.
Tissue turnover
Other uses are assessment of tissue breakdown in general; this is possible when there are no other indicators of hemolysis. It is used to follow up cancer (especially lymphoma) patients, as cancer cells have a high rate of turnover, with destroyed cells leading to an elevated LDH activity.
HIV
LDH is often measured in HIV patients as a non-specific marker for pneumonia due to ''Pneumocystis jirovecii'' (PCP). Elevated LDH in the setting of upper respiratory symptoms in a HIV patient suggests, but is not diagnostic for, PCP. However, in HIV-positive patients with respiratory symptoms, a very high LDH level (>600 IU/L) indicated histoplasmosis (9.33 times more likely) in a study of 120 PCP and 30 histoplasmosis patients.
Testing in other body fluids
Exudates and transudates
Measuring LDH in fluid aspirated from a pleural effusion (or pericardial effusion) can help in the distinction between exudate
An exudate is a fluid emitted by an organism through pores or a wound, a process known as exuding or exudation.
''Exudate'' is derived from ''exude'' 'to ooze' from Latin ''exsūdāre'' 'to (ooze out) sweat' (''ex-'' 'out' and ''sūdāre'' 'to ...
s (actively secreted fluid, e.g., due to inflammation) or transudates (passively secreted fluid, due to a high hydrostatic pressure or a low oncotic pressure). The usual criterion (included in Light's criteria) is that a ratio of pleural LDH to serum LDH greater than 0.6 or the upper limit of the normal laboratory value for serum LDH indicates an exudate, while a ratio of less indicates a transudate. Different laboratories have different values for the upper limit of serum LDH, but examples include 200 and 300[ IU/L.] In empyema, the LDH levels, in general, will exceed 1000 IU/L.
Meningitis and encephalitis
High levels of lactate dehydrogenase in cerebrospinal fluid are often associated with bacterial meningitis
Meningitis is acute or chronic inflammation of the protective membranes covering the brain and spinal cord, collectively called the meninges. The most common symptoms are fever, headache, and neck stiffness. Other symptoms include confusion or ...
. In the case of viral
Viral means "relating to viruses" (small infectious agents).
Viral may also refer to:
Viral behavior, or virality
Memetic behavior likened that of a virus, for example:
* Viral marketing, the use of existing social networks to spread a marke ...
meningitis, high LDH, in general, indicates the presence of encephalitis
Encephalitis is inflammation of the brain. The severity can be variable with symptoms including reduction or alteration in consciousness, headache, fever, confusion, a stiff neck, and vomiting. Complications may include seizures, hallucinations, ...
and poor prognosis
Prognosis (Greek: πρόγνωσις "fore-knowing, foreseeing") is a medical term for predicting the likely or expected development of a disease, including whether the signs and symptoms will improve or worsen (and how quickly) or remain stabl ...
.
In cancer treatment
LDH is involved in tumor initiation and metabolism. Cancer cells rely on increased glycolysis resulting in increased lactate production in addition to aerobic respiration in the mitochondria, even under oxygen-sufficient conditions (a process known as the Warburg effect). This state of fermentative glycolysis is catalyzed by the A form of LDH. This mechanism allows tumorous cells to convert the majority of their glucose stores into lactate regardless of oxygen availability, shifting use of glucose metabolites from simple energy production to the promotion of accelerated cell growth and replication.
LDH A and the possibility of inhibiting its activity has been identified as a promising target in cancer treatments focused on preventing carcinogenic cells from proliferating. Chemical inhibition of LDH A has demonstrated marked changes in metabolic processes and overall survival of carcinoma cells. Oxamate is a cytosolic inhibitor of LDH A that significantly decreases ATP production in tumorous cells as well as increasing production of reactive oxygen species (ROS). These ROS drive cancer cell proliferation by activating kinases that drive cell cycle progression growth factors at low concentrations, but can damage DNA through oxidative stress at higher concentrations. Secondary lipid oxidation products can also inactivate LDH and impact its ability to regenerate NADH, directly disrupting the enzymes ability to convert lactate to pyruvate.
While recent studies have shown that LDH activity is not necessarily an indicator of metastatic risk, LDH expression can act as a general marker in the prognosis of cancers. Expression of LDH5 and VEGF in tumors and the stroma has been found to be a strong prognostic factor for diffuse or mixed-type gastric cancers.
Prokaryotes
A cap- membrane-binding domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
**Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
* Do ...
is found in prokaryotic lactate dehydrogenase. This consists of a large seven-stranded antiparallel beta-sheet flanked on both sides by alpha-helices. It allows for membrane association.
See also
* Dehydrogenase
* Lactate
Lactate may refer to:
* Lactation, the secretion of milk from the mammary glands
* Lactate, the conjugate base of lactic acid
Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with ...
* Oxidoreductase
References
Further reading
*
*
*
*
*
*
*
*
*
*
External links
*
{{DEFAULTSORT:Lactate Dehydrogenase
Chemical pathology
Tumor markers
EC 1.1.1
Enzymes of known structure