Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
during the
Golden Age of Islam
The Islamic Golden Age was a period of cultural, economic, and scientific flourishing in the history of Islam, traditionally dated from the 8th century to the 14th century. This period is traditionally understood to have begun during the reign ...
, especially during the 9th and 10th centuries, was built on
Greek mathematics
Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly extant from the 7th century BC to the 4th century AD, around the shores of the Eastern Mediterranean. Greek mathem ...
(
Euclid
Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
,
Archimedes
Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
,
Apollonius) and
Indian mathematics
Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta ...
(
Aryabhata
Aryabhata (ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the ''Aryabhatiya'' (which ...
,
Brahmagupta
Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical trea ...
). Important progress was made, such as full development of the decimal
place-value system
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
to include
decimal fractions
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
, the first systematised study of
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
, and advances in
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and
trigonometry
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. T ...
.
Arabic works played an important role in the transmission of mathematics to Europe during the 10th—12th centuries.
Concepts
Algebra
The study of
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary a ...
, the name of which is derived from the
Arabic
Arabic (, ' ; , ' or ) is a Semitic languages, Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C ...
word meaning completion or "reunion of broken parts", flourished during the
Islamic golden age
The Islamic Golden Age was a period of cultural, economic, and scientific flourishing in the history of Islam, traditionally dated from the 8th century to the 14th century. This period is traditionally understood to have begun during the reign ...
.
Muhammad ibn Musa al-Khwarizmi
Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persians, Persian polymath from Khwarazm, who produced vastly influential works in Mathematics ...
, a Persian scholar in the
House of Wisdom
The House of Wisdom ( ar, بيت الحكمة, Bayt al-Ḥikmah), also known as the Grand Library of Baghdad, refers to either a major Abbasid public academy and intellectual center in Baghdad or to a large private library belonging to the Abba ...
in
Baghdad
Baghdad (; ar, بَغْدَاد , ) is the capital of Iraq and the second-largest city in the Arab world after Cairo. It is located on the Tigris near the ruins of the ancient city of Babylon and the Sassanid Persian capital of Ctesiphon ...
was the founder of algebra, is along with the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
mathematician
Diophantus
Diophantus of Alexandria ( grc, Διόφαντος ὁ Ἀλεξανδρεύς; born probably sometime between AD 200 and 214; died around the age of 84, probably sometime between AD 284 and 298) was an Alexandrian mathematician, who was the aut ...
, known as the father of algebra. In his book ''
'', Al-Khwarizmi deals with ways to solve for the
positive
Positive is a property of positivity and may refer to:
Mathematics and science
* Positive formula, a logical formula not containing negation
* Positive number, a number that is greater than 0
* Plus sign, the sign "+" used to indicate a posi ...
root
In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
s of first and second degree (linear and quadratic)
polynomial equations
In mathematics, an algebraic equation or polynomial equation is an equation of the form
:P = 0
where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation'' ...
. He introduces the method of
reduction, and unlike Diophantus, also gives general solutions for the equations he deals with.
Al-Khwarizmi's algebra was rhetorical, which means that the equations were written out in full sentences. This was unlike the algebraic work of Diophantus, which was syncopated, meaning that some symbolism is used. The transition to symbolic algebra, where only symbols are used, can be seen in the work of
Ibn al-Banna' al-Marrakushi
Ibn al‐Bannāʾ al‐Marrākushī ( ar, ابن البناء المراكشي), full name: Abu'l-Abbas Ahmad ibn Muhammad ibn Uthman al-Azdi al-Marrakushi () (29 December 1256 – 31 July 1321), was a Moroccan polymath who was active as a math ...
and
Abū al-Ḥasan ibn ʿAlī al-Qalaṣādī
Abū'l-Ḥasan ibn ʿAlī ibn Muḥammad ibn ʿAlī al-Qurashī al-Qalaṣādī ( ar, أبو الحسن علي بن محمد بن علي القرشي البسطي; 1412–1486) was a Muslim Arab mathematician from Al-Andalus specializing in Is ...
.
[
On the work done by Al-Khwarizmi, J. J. O'Connor and ]Edmund F. Robertson
Edmund Frederick Robertson (born 1 June 1943) is a professor emeritus of pure mathematics at the University of St Andrews.
Work
Robertson is one of the creators of the MacTutor History of Mathematics archive, along with John J. O'Connor. Rob ...
said:
Several other mathematicians during this time period expanded on the algebra of Al-Khwarizmi. Abu Kamil Shuja'
Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ ( Latinized as Auoquamel, ar, أبو كامل شجاع بن أسلم بن محمد بن شجاع, also known as ''Al-ḥāsib al-miṣrī''—lit. "the Egyptian reckoner") (c. 850 – ...
wrote a book of algebra accompanied with geometrical illustrations and proofs. He also enumerated all the possible solutions to some of his problems. Abu al-Jud, Omar Khayyam
Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī (18 May 1048 – 4 December 1131), commonly known as Omar Khayyam ( fa, عمر خیّام), was a polymath, known for his contributions to mathematics, astronomy, philosophy, an ...
, along with Sharaf al-Dīn al-Tūsī
Sharaf al-Dīn al-Muẓaffar ibn Muḥammad ibn al-Muẓaffar al-Ṭūsī ( fa, شرفالدین مظفر بن محمد بن مظفر توسی; 1135 – 1213) was an Iranian mathematician and astronomer of the Islamic Golden Age (during the ...
, found several solutions of the cubic equation
In algebra, a cubic equation in one variable is an equation of the form
:ax^3+bx^2+cx+d=0
in which is nonzero.
The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the ...
. Omar Khayyam found the general geometric solution of a cubic equation.
Cubic equations
Omar Khayyam
Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī (18 May 1048 – 4 December 1131), commonly known as Omar Khayyam ( fa, عمر خیّام), was a polymath, known for his contributions to mathematics, astronomy, philosophy, an ...
(c. 1038/48 in Iran
Iran, officially the Islamic Republic of Iran, and also called Persia, is a country located in Western Asia. It is bordered by Iraq and Turkey to the west, by Azerbaijan and Armenia to the northwest, by the Caspian Sea and Turkmeni ...
– 1123/24) wrote the ''Treatise on Demonstration of Problems of Algebra'' containing the systematic solution of cubic or third-order equations, going beyond the ''Algebra'' of al-Khwārizmī. Khayyám obtained the solutions of these equations by finding the intersection points of two conic section
In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
s. This method had been used by the Greeks, but they did not generalize the method to cover all equations with positive roots
A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients.
Root or roots may also refer to:
Art, entertainment, and media
* ''The Root'' (magazine), an online magazine focusing ...
.
Sharaf al-Dīn al-Ṭūsī
Sharaf al-Dīn al-Muẓaffar ibn Muḥammad ibn al-Muẓaffar al-Ṭūsī ( fa, شرفالدین مظفر بن محمد بن مظفر توسی; 1135 – 1213) was an Iranian mathematician and astronomer of the Islamic Golden Age (during the ...
(? in Tus, Iran
Tus ( Persian: توس Tus), also spelled as Tous or Toos, is an ancient city in Razavi Khorasan Province in Iran near Mashhad. To the ancient Greeks, it was known as Susia ( grc, Σούσια). It was also known as Tusa. Tus was divided int ...
– 1213/4) developed a novel approach to the investigation of cubic equations—an approach which entailed finding the point at which a cubic polynomial obtains its maximum value. For example, to solve the equation , with ''a'' and ''b'' positive, he would note that the maximum point of the curve occurs at , and that the equation would have no solutions, one solution or two solutions, depending on whether the height of the curve at that point was less than, equal to, or greater than ''a''. His surviving works give no indication of how he discovered his formulae for the maxima of these curves. Various conjectures have been proposed to account for his discovery of them.
Induction
The earliest implicit traces of mathematical induction can be found in Euclid
Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
's proof that the number of primes is infinite (c. 300 BCE). The first explicit formulation of the principle of induction was given by Pascal in his ''Traité du triangle arithmétique'' (1665).
In between, implicit proof by induction for arithmetic sequences was introduced by al-Karaji
( fa, ابو بکر محمد بن الحسن الکرجی; c. 953 – c. 1029) was a 10th-century Persian people, Persian mathematician and engineer who flourished at Baghdad. He was born in Karaj, a city near Tehran. His three principal sur ...
(c. 1000) and continued by al-Samaw'al
Al-Samawʾal ibn Yaḥyā al-Maghribī ( ar, السموأل بن يحيى المغربي, ; c. 1130 – c. 1180), commonly known as Samau'al al-Maghribi, was a mathematician, Islamic astronomy, astronomer and Islamic medicine, physician. Born to ...
, who used it for special cases of the binomial theorem
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
and properties of Pascal's triangle
In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although ot ...
.
Irrational numbers
The Greeks had discovered irrational number
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integ ...
s, but were not happy with them and only able to cope by drawing a distinction between ''magnitude'' and ''number''. In the Greek view, magnitudes varied continuously and could be used for entities such as line segments, whereas numbers were discrete. Hence, irrationals could only be handled geometrically; and indeed Greek mathematics was mainly geometrical. Islamic mathematicians including Abū Kāmil Shujāʿ ibn Aslam
Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ ( Latinized as Auoquamel, ar, أبو كامل شجاع بن أسلم بن محمد بن شجاع, also known as ''Al-ḥāsib al-miṣrī''—lit. "the Egyptian reckoner") (c. 850 – ...
and Ibn Tahir al-Baghdadi slowly removed the distinction between magnitude and number, allowing irrational quantities to appear as coefficients in equations and to be solutions of algebraic equations.[ They worked freely with irrationals as mathematical objects, but they did not examine closely their nature.
In the twelfth century, ]Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
translations of Al-Khwarizmi
Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persian polymath from Khwarazm, who produced vastly influential works in mathematics, astronom ...
's Arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
on the Indian numerals
Indian or Indians may refer to:
Peoples South Asia
* Indian people, people of Indian nationality, or people who have an Indian ancestor
** Non-resident Indian, a citizen of India who has temporarily emigrated to another country
* South Asia ...
introduced the decimal
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
positional number system
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
to the Western world
The Western world, also known as the West, primarily refers to the various nations and state (polity), states in the regions of Europe, North America, and Oceania. . His ''Compendious Book on Calculation by Completion and Balancing'' presented the first systematic solution of linear
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear r ...
and quadratic equation
In algebra, a quadratic equation () is any equation that can be rearranged in standard form as
ax^2 + bx + c = 0\,,
where represents an unknown (mathematics), unknown value, and , , and represent known numbers, where . (If and then the equati ...
s. In Renaissance
The Renaissance ( , ) , from , with the same meanings. is a period in European history marking the transition from the Middle Ages to modernity and covering the 15th and 16th centuries, characterized by an effort to revive and surpass ideas ...
Europe, he was considered the original inventor of algebra, although it is now known that his work is based on older Indian or Greek sources. He revised Ptolemy
Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
's ''Geography
Geography (from Greek: , ''geographia''. Combination of Greek words ‘Geo’ (The Earth) and ‘Graphien’ (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, and ...
'' and wrote on astronomy and astrology. However, C.A. Nallino suggests that al-Khwarizmi's original work was not based on Ptolemy but on a derivative world map, presumably in Syriac Syriac may refer to:
*Syriac language, an ancient dialect of Middle Aramaic
*Sureth, one of the modern dialects of Syriac spoken in the Nineveh Plains region
* Syriac alphabet
** Syriac (Unicode block)
** Syriac Supplement
* Neo-Aramaic languages a ...
or Arabic
Arabic (, ' ; , ' or ) is a Semitic languages, Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C ...
.
Spherical trigonometry
The spherical law of sines
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law,
\frac \,=\, \frac \,=\, \frac \,=\, 2R,
where , and a ...
was discovered in the 10th century: it has been attributed variously to Abu-Mahmud Khojandi
Abu Mahmud Hamid ibn al-Khidr al-Khojandi (known as Abu Mahmood Khojandi, Alkhujandi or al-Khujandi, Persian: ابومحمود خجندی, c. 940 - 1000) was a Muslim Transoxanian astronomer and mathematician born in Khujand (now part of Tajikista ...
, Nasir al-Din al-Tusi and Abu Nasr Mansur
Abu Nasri Mansur ibn Ali ibn Iraq ( fa, أبو نصر منصور بن علی بن عراق; c. 960 – 1036) was a Persian Muslim mathematician and astronomer. He is well known for his work with the spherical sine law.Bijli suggests that three m ...
, with Abu al-Wafa' Buzjani
Abū al-Wafāʾ, Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī or Abū al-Wafā Būzhjānī ( fa, ابوالوفا بوزجانی or بوژگانی) (10 June 940 – 15 July 998) was a Persian mathematician ...
as a contributor. Ibn Muʿādh al-Jayyānī's ''The book of unknown arcs of a sphere'' in the 11th century introduced the general law of sines. The plane law of sines was described in the 13th century by Nasīr al-Dīn al-Tūsī
Muhammad ibn Muhammad ibn al-Hasan al-Tūsī ( fa, محمد ابن محمد ابن حسن طوسی 18 February 1201 – 26 June 1274), better known as Nasir al-Din al-Tusi ( fa, نصیر الدین طوسی, links=no; or simply Tusi in the West ...
. In his ''On the Sector Figure'', he stated the law of sines for plane and spherical triangles and provided proofs for this law.
Negative numbers
In the 9th century, Islamic mathematicians were familiar with negative numbers from the works of Indian mathematicians, but the recognition and use of negative numbers during this period remained timid. Al-Khwarizmi
Muḥammad ibn Mūsā al-Khwārizmī ( ar, محمد بن موسى الخوارزمي, Muḥammad ibn Musā al-Khwārazmi; ), or al-Khwarizmi, was a Persian polymath from Khwarazm, who produced vastly influential works in mathematics, astronom ...
did not use negative numbers or negative coefficients. But within fifty years, Abu Kamil
Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ ( Latinized as Auoquamel, ar, أبو كامل شجاع بن أسلم بن محمد بن شجاع, also known as ''Al-ḥāsib al-miṣrī''—lit. "the Egyptian reckoner") (c. 850 – ...
illustrated the rules of signs for expanding the multiplication . Al-Karaji
( fa, ابو بکر محمد بن الحسن الکرجی; c. 953 – c. 1029) was a 10th-century Persian people, Persian mathematician and engineer who flourished at Baghdad. He was born in Karaj, a city near Tehran. His three principal sur ...
wrote in his book ''al-Fakhrī'' that "negative quantities must be counted as terms". In the 10th century, Abū al-Wafā' al-Būzjānī
Abū al-Wafāʾ Muḥammad ibn Muḥammad ibn Yaḥyā ibn Ismāʿīl ibn al-ʿAbbās al-Būzjānī or Abū al-Wafā Būzhjānī ( fa, ابوالوفا بوزجانی or بوژگانی) (10 June 940 – 15 July 998) was a Persian mathematician a ...
considered debts as negative numbers in ''A Book on What Is Necessary from the Science of Arithmetic for Scribes and Businessmen''.
By the 12th century, al-Karaji's successors were to state the general rules of signs and use them to solve polynomial division
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, beca ...
s. As al-Samaw'al
Al-Samawʾal ibn Yaḥyā al-Maghribī ( ar, السموأل بن يحيى المغربي, ; c. 1130 – c. 1180), commonly known as Samau'al al-Maghribi, was a mathematician, Islamic astronomy, astronomer and Islamic medicine, physician. Born to ...
writes:
the product of a negative number — ''al-nāqiṣ'' — by a positive number — ''al-zāʾid'' — is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative number. If we subtract a negative number from a positive number, the remainder is their positive sum. If we subtract a positive number from an empty power (''martaba khāliyya''), the remainder is the same negative, and if we subtract a negative number from an empty power, the remainder is the same positive number.
Double false position
Between the 9th and 10th centuries, the Egyptian
Egyptian describes something of, from, or related to Egypt.
Egyptian or Egyptians may refer to:
Nations and ethnic groups
* Egyptians, a national group in North Africa
** Egyptian culture, a complex and stable culture with thousands of years of ...
mathematician Abu Kamil
Abū Kāmil Shujāʿ ibn Aslam ibn Muḥammad Ibn Shujāʿ ( Latinized as Auoquamel, ar, أبو كامل شجاع بن أسلم بن محمد بن شجاع, also known as ''Al-ḥāsib al-miṣrī''—lit. "the Egyptian reckoner") (c. 850 – ...
wrote a now-lost treatise on the use of double false position, known as the ''Book of the Two Errors'' (''Kitāb al-khaṭāʾayn''). The oldest surviving writing on double false position from the Middle East
The Middle East ( ar, الشرق الأوسط, ISO 233: ) is a geopolitical region commonly encompassing Arabian Peninsula, Arabia (including the Arabian Peninsula and Bahrain), Anatolia, Asia Minor (Asian part of Turkey except Hatay Pro ...
is that of Qusta ibn Luqa
Qusta ibn Luqa (820–912) (Costa ben Luca, Constabulus) was a Syrian Melkite Christian physician, philosopher, astronomer, mathematician and translator. He was born in Baalbek. Travelling to parts of the Byzantine Empire, he brought back Greek te ...
(10th century), an Arab
The Arabs (singular: Arab; singular ar, عَرَبِيٌّ, DIN 31635: , , plural ar, عَرَب, DIN 31635: , Arabic pronunciation: ), also known as the Arab people, are an ethnic group mainly inhabiting the Arab world in Western Asia, ...
mathematician from Baalbek
Baalbek (; ar, بَعْلَبَكّ, Baʿlabakk, Syriac-Aramaic: ܒܥܠܒܟ) is a city located east of the Litani River in Lebanon's Beqaa Valley, about northeast of Beirut. It is the capital of Baalbek-Hermel Governorate. In Greek and Roman ...
, Lebanon
Lebanon ( , ar, لُبْنَان, translit=lubnān, ), officially the Republic of Lebanon () or the Lebanese Republic, is a country in Western Asia. It is located between Syria to the north and east and Israel to the south, while Cyprus li ...
. He justified the technique by a formal, Euclidean-style geometric proof. Within the tradition of Golden Age Muslim mathematics, double false position was known as ''hisāb al-khaṭāʾayn'' ("reckoning by two errors"). It was used for centuries to solve practical problems such as commercial and juridical questions (estate partitions according to rules of Quranic inheritance), as well as purely recreational problems. The algorithm was often memorized with the aid of mnemonics
A mnemonic ( ) device, or memory device, is any learning technique that aids information retention or retrieval (remembering) in the human memory for better understanding.
Mnemonics make use of elaborative encoding, retrieval cues, and imagery ...
, such as a verse attributed to Ibn al-Yasamin
Abu Muhammad 'Abdallah ibn Muhammad ibn Hajjaj ibn al-Yasmin al-Adrini al-Fessi () (died 1204) more commonly known as ibn al-Yasmin, was a Berber mathematician, born in Morocco and he received his education in Fez and Sevilla. Little is known of ...
and balance-scale diagrams explained by al-Hassar
Al-Hassar or Abu Bakr Muhammad ibn Abdallah ibn Ayyash al-Hassar ( ar, أبو بكر محمد ابن عياش الحصَار) was a 12th-century Moroccan mathematician. He is the author of two books ''Kitab al-bayan wat-tadhkar'' (Book of Demonstr ...
and Ibn al-Banna
Ibn al‐Bannāʾ al‐Marrākushī ( ar, ابن البناء المراكشي), full name: Abu'l-Abbas Ahmad ibn Muhammad ibn Uthman al-Azdi al-Marrakushi () (29 December 1256 – 31 July 1321), was a Moroccan polymath who was active as a math ...
, who were each mathematicians of Moroccan origin.
Other major figures
Sally P. Ragep, a historian of science in Islam, estimated in 2019 that "tens of thousands" of Arabic manuscripts in mathematical sciences and philosophy remain unread, which give studies which "reflect individual biases and a limited focus on a relatively few texts and scholars"."Science Teaching in Pre-Modern Societies"
in Film Screening and Panel Discussion, ''McGill University'', 15 January 2019.
* 'Abd al-Hamīd ibn Turk (fl. 830) (quadratics)
* Thabit ibn Qurra Thabit ( ar, ) is an Arabic name for males that means "the imperturbable one". It is sometimes spelled Thabet.
People with the patronymic
* Ibn Thabit, Libyan hip-hop musician
* Asim ibn Thabit, companion of Muhammad
* Hassan ibn Sabit (died 674 ...
(826–901)
* Sind ibn Ali Abu al-Tayyib Sanad ibn Ali al-Yahudi (died c. 864 C.E.), was a ninth-century Iraqi Jewish astronomer, translator, mathematician and engineer employed at the court of the Abbasid caliph Al-Ma'mun. A later convert to Islam, Sanad's father was a lear ...
(d. after 864)
* Ismail al-Jazari
Badīʿ az-Zaman Abu l-ʿIzz ibn Ismāʿīl ibn ar-Razāz al-Jazarī (1136–1206, ar, بديع الزمان أَبُ اَلْعِزِ إبْنُ إسْماعِيلِ إبْنُ الرِّزاز الجزري, ) was a polymath: a scholar, ...
(1136–1206)
* Abū Sahl al-Qūhī
(; fa, ابوسهل بیژن کوهی ''Abusahl Bijan-e Koohi'') was a Persian mathematician, physicist and astronomer. He was from Kuh (or Quh), an area in Tabaristan, Amol, and flourished in Baghdad in the 10th century. He is considered one of ...
(c. 940–1000) (centers of gravity)
* Abu'l-Hasan al-Uqlidisi Abu'l Hasan Ahmad ibn Ibrahim Al-Uqlidisi ( ar, أبو الحسن أحمد بن ابراهيم الإقليدسي) was a Muslim Arab mathematician, who was active in Damascus and Baghdad. He wrote the earliest surviving book on the positional use ...
(952–953) (arithmetic)
* 'Abd al-'Aziz al-Qabisi (d. 967)
* Ibn al-Haytham
Ḥasan Ibn al-Haytham, Latinized as Alhazen (; full name ; ), was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq.For the description of his main fields, see e.g. ("He is one of the prin ...
(c. 965–1040)
* Abū al-Rayḥān al-Bīrūnī (973–1048) (trigonometry)
* Ibn Maḍāʾ
Abu al-Abbas Ahmad bin Abd al-Rahman bin Muhammad bin Sa'id bin Harith bin Asim al-Lakhmi al-Qurtubi, better known as Ibn Maḍāʾ ( ar, ابن مضاء; 1116–1196) was an Arab Muslim polymath from Córdoba in Islamic Spain. Kees Versteegh ...
(c. 1116–1196)
* Jamshīd al-Kāshī
Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) ( fa, غیاث الدین جمشید کاشانی ''Ghiyās-ud-dīn Jamshīd Kāshānī'') (c. 1380 Kashan, Iran – 22 June 1429 Samarkand, Transoxania) was a Persian astronomer a ...
(c. 1380–1429) (decimals and estimation of the circle constant)
Gallery
File:Gravure originale du compas parfait par Abū Sahl al-Qūhī.jpg, Engraving of Abū Sahl al-Qūhī
(; fa, ابوسهل بیژن کوهی ''Abusahl Bijan-e Koohi'') was a Persian mathematician, physicist and astronomer. He was from Kuh (or Quh), an area in Tabaristan, Amol, and flourished in Baghdad in the 10th century. He is considered one of ...
's perfect compass to draw conic sections.
File:Theorem of al-Haitham.JPG, The theorem of Ibn Haytham.
See also
* Arabic numerals
Arabic numerals are the ten numerical digits: , , , , , , , , and . They are the most commonly used symbols to write Decimal, decimal numbers. They are also used for writing numbers in other systems such as octal, and for writing identifiers ...
* Indian influence on Islamic mathematics in medieval Islam
* History of calculus
Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East, a ...
* History of geometry
Geometry (from the grc, γεωμετρία; '' geo-'' "earth", '' -metron'' "measurement") arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the stu ...
* Science in the medieval Islamic world
Science in the medieval Islamic world was the science developed and practised during the Islamic Golden Age under the Umayyads of Córdoba, the Abbadids of Seville, the Samanids, the Ziyarids, the Buyids in Persia, the Abbasid Caliphate and ...
* Timeline of science and engineering in the Muslim world
This timeline of science and engineering in the Muslim world covers the time period from the eighth century AD to the introduction of European science to the Muslim world in the nineteenth century. All year dates are given according to the G ...
References
Sources
*
*
*
*
*
*
*
Further reading
;Books on Islamic mathematics
*
** Review:
** Review:
*
*
*
* Sowjetische Beiträge zur Geschichte der Naturwissenschaft pp. 62–160.
*
; Book chapters on Islamic mathematics
*
; Books on Islamic science
*
*
; Books on the history of mathematics
* (Reviewed: )
*
;Journal articles on Islamic mathematics
* Høyrup, Jens
“The Formation of «Islamic Mathematics»: Sources and Conditions”
''Filosofi og Videnskabsteori på Roskilde Universitetscenter''. 3. Række: ''Preprints og Reprints'' 1987 Nr. 1.
;Bibliographies and biographies
* Brockelmann, Carl. ''Geschichte der Arabischen Litteratur''. 1.–2. Band, 1.–3. Supplementband. Berlin: Emil Fischer, 1898, 1902; Leiden: Brill, 1937, 1938, 1942.
*
*
*
; Television documentaries
* Marcus du Sautoy
Marcus Peter Francis du Sautoy (; born 26 August 1965) is a British mathematician, Simonyi Professor for the Public Understanding of Science at the University of Oxford, Fellow of New College, Oxford and author of popular mathematics and popu ...
(presenter) (2008). "The Genius of the East". ''The Story of Maths
''The Story of Maths'' is a four-part British television series outlining aspects of the history of mathematics. It was a co-production between the Open University and the BBC and aired in October 2008 on BBC Four. The material was written and pr ...
''. BBC #REDIRECT BBC #REDIRECT BBC
Here i going to introduce about the best teacher of my life b BALAJI sir. He is the precious gift that I got befor 2yrs . How has helped and thought all the concept and made my success in the 10th board exam. ...
...
(presenter) (2010). ''
''.
...