Iron Bacteria
   HOME

TheInfoList



OR:

Iron-oxidizing bacteria are
chemotroph A Chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic ( chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph designation is in contrast to phototro ...
ic
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
that derive
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
by
oxidizing Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
dissolved
ferrous In chemistry, the adjective Ferrous indicates a compound that contains iron(II), meaning iron in its +2 oxidation state, possibly as the divalent cation Fe2+. It is opposed to "ferric" or iron(III), meaning iron in its +3 oxidation state, such a ...
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
. They are known to grow and proliferate in waters containing iron concentrations as low as 0.1 mg/L. However, at least 0.3 ppm of dissolved
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
is needed to carry out the oxidation.
Iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
is a very important element required by living
organisms In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fungi; ...
to carry out numerous
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
reactions such as the formation of
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
involved in
biochemical Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology an ...
reactions. Examples of these proteins include
iron–sulfur protein Iron–sulfur proteins (or iron–sulphur proteins in British spelling) are proteins characterized by the presence of iron–sulfur clusters containing sulfide-linked di-, tri-, and tetrairon centers in variable oxidation states. Iron–sulfur clu ...
s,
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
, and
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
es. Iron has a widespread distribution globally and is considered one of the most abundant in the Earth's crust, soil, and sediments. Iron is a trace element in marine environments. Its role in the metabolism of some
chemolithotrophs Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic ...
is probably very ancient. As
Liebig's law of the minimum Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1840) and later popularized by Justus von Liebig. It states that growth is dictated not by t ...
notes, the essential element present in the smallest amount (called
limiting factor A limiting factor is a variable of a system that causes a noticeable change in output or another measure of a type of system. The limiting factor is in a pyramid shape of organisms going up from the producers to consumers and so on. A factor not l ...
) is the one that determines the growth rate of a population. Iron is the most common limiting element in
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. Ph ...
communities and has a key role in structuring and determining their abundance. It is particularly important in the
high-nutrient, low-chlorophyll regions High-nutrient, low-chlorophyll (HNLC) regions are regions of the ocean where the abundance of phytoplankton is low and fairly constant despite the availability of macronutrients. Phytoplankton rely on a suite of nutrients for cellular function. Ma ...
, where the presence of
micronutrient Micronutrients are nutrient, essential dietary elements required by organisms in varying quantities throughout life to orchestrate a range of physiological functions to maintain health. Micronutrient requirements differ between organisms; for exam ...
s is mandatory for the total primary production.


Introduction

When de-oxygenated water reaches a source of oxygen, iron bacteria convert dissolved iron into an
insoluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
reddish-brown gelatinous slime that discolors stream beds and can stain plumbing fixtures, clothing, or utensils washed with the water carrying it.
Organic material Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
dissolved in water is often the underlying cause of an iron-oxidizing bacteria population.
Groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidate ...
may be naturally de-oxygenated by decaying vegetation in
swamp A swamp is a forested wetland.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Swamps are considered to be transition zones because both land and water play a role in ...
s. Useful mineral deposits of
bog iron Bog iron is a form of impure iron deposit that develops in bogs or swamps by the chemical or biochemical oxidation of iron carried in solution. In general, bog ores consist primarily of iron oxyhydroxides, commonly goethite (FeO(OH)). Iron-bea ...
ore have formed where groundwater has historically emerged and been exposed to atmospheric oxygen.
Anthropogenic hazard Anthropogenic hazards are hazards caused by human action or inaction. They are contrasted with natural hazards. Anthropogenic hazards may adversely affect humans, other organisms, biomes, and ecosystems. They can even cause an omnicide. The f ...
s like
landfill A landfill site, also known as a tip, dump, rubbish dump, garbage dump, or dumping ground, is a site for the disposal of waste materials. Landfill is the oldest and most common form of waste disposal, although the systematic burial of the waste ...
leachate A leachate is any liquid that, in the course of passing through matter, extracts soluble or suspended solids, or any other component of the material through which it has passed. Leachate is a widely used term in the environmental sciences wher ...
,
septic drain field Septic drain fields, also called leach fields or leach drains, are subsurface wastewater disposal facilities used to remove contaminants and impurities from the liquid that emerges after anaerobic digestion in a septic tank. Organic materials in ...
s, or leakage of light
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crud ...
fuels like
gasoline Gasoline (; ) or petrol (; ) (see ) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines (also known as petrol engines). It consists mostly of organic co ...
are other possible sources of organic materials allowing soil
microbes A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
to de-oxygenate groundwater. A similar reaction may form black deposits of
manganese dioxide Manganese dioxide is the inorganic compound with the formula . This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for is for dry-cell ...
from dissolved
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
but is less common because of the relative abundance of iron (5.4%) in comparison to manganese (0.1%) in average soils. The sulfurous smell of rot or decay sometimes associated with iron-oxidizing bacteria results from the enzymatic conversion of soil
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ar ...
s to volatile
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
as an alternative source of oxygen in anaerobic water.


Habitat and iron-oxidizing bacterial groups

Iron-oxidizing bacteria colonize the transition zone where de-oxygenated water from an
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
environment flows into an aerobic environment. Groundwater containing dissolved organic material may be de-oxygenated by
microorganisms A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
feeding on that dissolved organic material. In aerobic conditions, pH variation plays an important role in driving the oxidation reaction of Fe2+/Fe3+. At
neutrophilic Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
pHs (hydrothermal vents, deep ocean basalts, groundwater iron seeps) the oxidation of iron by microorganisms is highly competitive with the rapid abiotic reaction occurring in <1 min. Therefore, the microbial community has to inhabit
microaerophilic A microaerophile is a microorganism that requires environments containing lower levels of dioxygen than that are present in the atmosphere (i.e. < 21% O2; typically 2–10% O2) for optimal growth. A more re ...
regions where the low oxygen concentration allows the cell to oxidize Fe(II) and produce energy to grow. However, under acidic conditions, where ferrous iron is more soluble and stable even in the presence of oxygen, only biological processes are responsible for the oxidation of iron, thus making ferrous iron oxidation the major metabolic strategy in iron-rich acidic environments. Despite being phylogenetically diverse, the microbial ferrous iron oxidation metabolic strategy (found in
Archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
and Bacteria) is present in 7
phyla Phyla, the plural of ''phylum'', may refer to: * Phylum, a biological taxon between Kingdom and Class * by analogy, in linguistics, a large division of possibly related languages, or a major language family which is not subordinate to another Phyl ...
, being highly pronounced in the phylum
Pseudomonadota Pseudomonadota (synonym Proteobacteria) is a major phylum of Gram-negative bacteria. The renaming of phyla in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature. The ...
(formerly Proteobacteria), particularly the Alpha, Beta, Gamma and
Zetaproteobacteria The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single ...
classes, and among the Archaea domain in the "
Euryarchaeota Euryarchaeota (from Ancient Greek ''εὐρύς'' eurús, "broad, wide") is a phylum of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extre ...
" and
Thermoproteota The Thermoproteota (also known as crenarchaea) are archaea that have been classified as a phylum of the Archaea domain. Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteris ...
phyla, as well as in
Actinomycetota The ''Actinomycetota'' (or ''Actinobacteria'') are a phylum of all gram-positive bacteria. They can be terrestrial or aquatic. They are of great economic importance to humans because agriculture and forests depend on their contributions to soi ...
,
Bacillota The Bacillota (synonym Firmicutes) are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earl ...
,
Chlorobiota The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthes ...
, and Nitrosospirota phyla. There are very well-studied iron-oxidizing bacterial species such as ''
Thiobacillus ferrooxidans ''Acidithiobacillus'' is a genus of the ''Acidithiobacillia'' in the "Pseudomonadota". The genus includes acidophilic organisms capable of iron and/or sulfur oxidation. Like all ''"Pseudomonadota"'', ''Acidithiobacillus'' spp. are Gram-negative. ...
'', and ''
Leptospirillum ferrooxidans Nitrospirota is a phylum of bacteria. It includes multiple genera, such as ''Nitrospira'', the largest. The first member of this phylum, ''Nitrospira marina'', was discovered in 1985. The second member, ''Nitrospira moscoviensis'', was discovered ...
,'' and some like ''Gallionella ferruginea'' and '' Mariprofundis ferrooxydans'' are able to produce a particular extracellular stalk-ribbon structure rich in iron, known as a typical
biosignature A biosignature (sometimes called chemical fossil or molecular fossil) is any substance – such as an element, isotope, or molecule – or phenomenon that provides scientific evidence of past or present life. Measurable attribute ...
of microbial iron oxidation. These structures can be easily detected in a sample of water, indicating the presence iron-oxidizing bacteria. This biosignature has been a tool to understand the importance of iron metabolism in the Earth's past.


Ferrous iron oxidation and early life

Unlike most lithotrophic metabolisms, the oxidation of Fe2+ to Fe3+ yields very little energy to the cell (∆G° = 29 kJ/mol and ∆G° = -90 kJ/mol in acidic and neutral environments, respectively) compared to other
chemolithotroph Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobi ...
ic metabolisms. Therefore the cell must oxidize large amounts of Fe2+ to fulfill its metabolic requirements, while contributing to the mineralization process (through the excretion of twisted stalks). The aerobic iron-oxidizing bacterial metabolism is thought to have made a remarkable contribution to the formation of the largest iron deposit ( banded iron formation (BIF)) due to the advent of oxygen in the atmosphere 2.7 billion years ago (produced by
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, blu ...
). However, with the discovery of Fe(II) oxidation carried out under anoxic conditions in the late 1990s using light as an energy source or chemolithotrophically, using a different terminal electron acceptor (mostly NO3), the suggestion arose that anoxic Fe2+ metabolism may pre-date aerobic Fe2+ oxidation and that the age of the BIF pre-dates oxygenic photosynthesis. This suggests that microbial anoxic phototrophic and anaerobic chemolithotrophic metabolism may have been present on the ancient earth, and together with Fe(III) reducers, they may have been responsible for the BIF in the
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the ...
eon.


Microbial ferrous iron oxidation metabolism


Anoxygenic phototrophic ferrous iron oxidation

The anoxygenic phototrophic iron oxidation was the first anaerobic metabolism to be described within the iron anaerobic oxidation metabolism. The photoferrotrophic bacteria use Fe2+ as electron donor and the energy from light to assimilate CO2 into biomass through the Calvin Benson-Bassam cycle (or rTCA cycle) in a neutrophilic environment (pH 5.5-7.2), producing Fe3+ oxides as a waste product that precipitates as a mineral, according to the following stoichiometry (4 mM of Fe(II) can yield 1 mM of CH2O): (∆G° > 0) Nevertheless, some bacteria do not use the photoautotrophic Fe(II) oxidation metabolism for growth purposes. Instead, it has been suggested that these groups are sensitive to Fe(II) and therefore oxidize Fe(II) into more insoluble Fe(III) oxide to reduce its toxicity, enabling them to grow in the presence of Fe(II). On the other hand, based on experiments with ''R. capsulatus'' SB1003 (photoheterotrophic), it has been demonstrated that the oxidation of Fe(II) might be the mechanisms whereby the bacteria is enable to access organic carbon sources (acetate, succinate) whose use depends on Fe(II) oxidation Nonetheless, many iron-oxidizing bacteria can use other compounds as electron donors in addition to Fe(II), or even perform dissimilatory Fe(III) reduction as the ''
Geobacter metallireducens ''Geobacter metallireducens'' is a gram-negative metal-reducing proteobacterium. It is a strict anaerobe that oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. It can als ...
'' The dependence of photoferrotrophics on light as a crucial resource can take the bacteria to a cumbersome situation, where due to their requirement for anoxic lighted regions (near the surface) they could be faced with competition by abiotic reactions due to the presence of molecular oxygen. To avoid this problem, they tolerate microaerophilic surface conditions or perform the photoferrotrophic Fe(II) oxidation deeper in the sediment/water column, with low light availability.


Nitrate-dependent Fe(II) oxidation

Light penetration can limit the Fe(II) oxidation in the water column. However, nitrate dependent microbial Fe(II) oxidation is a light independent metabolism that has been shown to support microbial growth in various freshwater and marine sediments (paddy soil, stream, brackish lagoon, hydrothermal, deep-sea sediments) and later on demonstrated as a pronounced metabolism within the water column at the
OMZ United Heavy Machinery or Uralmash-Izhora Group, (russian: Объединенные машиностроительные заводы, Objedinennye Mashinostroitelnye Zavody, OMZ) is a large Russia-based international heavy industry and manufac ...
. Microbes that perform this metabolism are successful in neutrophilic or alcaline environments, due to the high difference in between the redox potential of the couples Fe2+/Fe3+ and NO3/NO2 (+200 mV and +770 mV, respectively) releasing a lot of free energy when compared to other iron oxidation metabolisms (∆G°=-103.5 kJ/mol) The microbial oxidation of ferrous iron coupled to denitrification (with nitrite or dinitrogen gas being the final product) can be autotrophic using inorganic carbon or organic co-substrates (acetate, butyrate, pyruvate, ethanol) performing heterotrophic growth in the absence of inorganic carbon. It has been suggested that the heterotrophic nitrate-dependent ferrous iron oxidation using organic carbon might be the most favorable process. This metabolism might be very important for carrying out an important step in the biogeochemical cycle within the OMZ.


Ferrous iron oxidizers in the marine environment

In the marine environment, the most well-known class of iron oxidizing-bacteria is
zetaproteobacteria The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single ...
, which are major players in marine ecosystems. Being generally microaerophilic they are adapted to live in transition zones where the
oxic {{Short pages monitor