Iridium 2
   HOME

TheInfoList



OR:

Iridium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Ir and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
77. A very hard, brittle, silvery-white
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
of the
platinum group The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered t ...
, it is considered the second-densest naturally occurring metal (after osmium) with a density of as defined by experimental
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
. It is one of the most
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
-resistant metals, even at temperatures as high as . However, corrosion-resistance is not quantifiable in absolute terms; although only certain molten salts and
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable, whereas gold dust is not flammable but can be attacked by substances that iridium resists, such as aqua regia. Iridium was discovered in 1803 among insoluble impurities in natural
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Platinu ...
.
Smithson Tennant Smithson Tennant FRS (30 November 1761 – 22 February 1815) was an English chemist. He is best known for his discovery of the elements iridium and osmium, which he found in the residues from the solution of platinum ores in 1803. He also cont ...
, the primary discoverer, named it after the Greek goddess
Iris Iris most often refers to: *Iris (anatomy), part of the eye *Iris (mythology), a Greek goddess * ''Iris'' (plant), a genus of flowering plants * Iris (color), an ambiguous color term Iris or IRIS may also refer to: Arts and media Fictional ent ...
, personification of the rainbow, because of the striking and diverse colors of its salts. Iridium is one of the rarest elements in
Earth's crust Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The ...
, with annual production and consumption of only . 191Ir and 193Ir are the only two naturally occurring
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s of iridium, as well as the only
stable isotope The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
s; the latter is the more abundant. The dominant uses of iridium are the metal itself and its alloys, as in high-performance
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air ...
s,
crucible A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. While crucibles were historically usually made from clay, they can be made from any material that withstands te ...
s for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the
chloralkali process The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), which are comm ...
. Important compounds of iridium are chlorides and iodides in industrial
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Iridium is a component of some OLEDs. Iridium is found in
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s in much higher abundance than in the Earth's crust. For this reason, the unusually high abundance of iridium in the clay layer at the
Cretaceous–Paleogene boundary The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of ...
gave rise to the
Alvarez hypothesis The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was c ...
that the impact of a massive extraterrestrial object caused the extinction of dinosaurs and many other species 66 million years ago, now known to be produced by the impact that formed the
Chicxulub crater The Chicxulub crater () is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large a ...
. Similarly, an iridium anomaly in core samples from the
Pacific Ocean The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean (or, depending on definition, to Antarctica) in the south, and is bounded by the continen ...
suggested the
Eltanin impact The Eltanin impact is thought to be an asteroid impact in the eastern part of the South Pacific Ocean that occurred around the Pliocene-Pleistocene boundary approximately 2.51 ± 0.07  million years ago. The location was at the edge of th ...
of about 2.5 million years ago. It is thought that the total amount of iridium in the planet Earth is much higher than that observed in crustal rocks, but as with other platinum-group metals, the high density and tendency of iridium to bond with iron caused most iridium to descend below the crust when the planet was young and still molten.


Characteristics


Physical properties

A member of the
platinum group The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered t ...
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s, iridium is white, resembling
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Platinu ...
, but with a slight yellowish cast. Because of its
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
,
brittleness A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Bre ...
, and very high
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends ...
, solid iridium is difficult to machine, form, or work; thus
powder metallurgy Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and ...
is commonly employed instead. It is the only metal to maintain good mechanical properties in air at temperatures above . It has the 10th highest boiling point among all elements and becomes a superconductor at temperatures below . Iridium's
modulus of elasticity An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is ...
is the second-highest among the metals, being surpassed only by osmium. This, together with a high
shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: :G \ \stackrel ...
and a very low figure for
Poisson's ratio In materials science and solid mechanics, Poisson's ratio \nu ( nu) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value of Pois ...
(the relationship of longitudinal to lateral
strain Strain may refer to: Science and technology * Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes * Strain (chemistry), a chemical stress of a molecule * Strain (injury), an injury to a mu ...
), indicate the high degree of
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a b ...
and resistance to deformation that have rendered its fabrication into useful components a matter of great difficulty. Despite these limitations and iridium's high cost, a number of applications have developed where mechanical strength is an essential factor in some of the extremely severe conditions encountered in modern technology. The measured
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of iridium is only slightly lower (by about 0.12%) than that of osmium, the densest metal known. Some ambiguity occurred regarding which of the two elements was denser, due to the small size of the difference in density and difficulties in measuring it accurately, but, with increased accuracy in factors used for calculating density, X-ray crystallographic data yielded densities of for iridium and for osmium. Iridium is extremely brittle, to the point of being hard to weld because the heat-affected zone cracks, but it can be made more ductile by addition of small quantities of
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
and
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'', ...
(0.2% of each apparently works well).- The
Vickers hardness The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness t ...
of pure platinum is 56 HV, whereas platinum with 50% of iridium can reach over 500 HV.


Chemical properties

Iridium is the most
corrosion-resistant Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engin ...
metal known: it is not attacked by
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
s, including aqua regia. In the presence of oxygen, it reacts with
cyanide Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of ...
salts. Traditional oxidants also react, including the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s and oxygen at higher temperatures. Iridium also reacts directly with
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
at atmospheric pressure to yield
iridium disulfide Iridium disulfide is the binary inorganic compound with the formula IrS2. Prepared by the direct reaction of the elements, the compound adopts the Pyrite#Crystallography, pyrite crystal structure at high pressure. At normal atmospheric pressures ...
.


Isotopes

Iridium has two naturally occurring, stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s, 191Ir and 193Ir, with
natural abundance In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomi ...
s of 37.3% and 62.7%, respectively. At least 37
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s have also been synthesized, ranging in
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
from 164 to 202. 192Ir, which falls between the two stable isotopes, is the most stable radioisotope, with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 73.827 days, and finds application in
brachytherapy Brachytherapy is a form of radiation therapy where a sealed radiation source is placed inside or next to the area requiring treatment. ''Brachy'' is Greek for short. Brachytherapy is commonly used as an effective treatment for cervical, prost ...
and in industrial
radiography Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography ("diagnostic" and "therapeut ...
, particularly for nondestructive testing of welds in steel in the oil and gas industries; iridium-192 sources have been involved in a number of radiological accidents. Three other isotopes have half-lives of at least a day—188Ir, 189Ir, and 190Ir. Isotopes with masses below 191 decay by some combination of β+ decay, α decay, and (rare)
proton emission Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case t ...
, with the exception of 189Ir, which decays by
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
. Synthetic isotopes heavier than 191 decay by β decay, although 192Ir also has a minor electron capture decay path. All known isotopes of iridium were discovered between 1934 and 2008, with the most recent discoveries being 200–202Ir. At least 32 metastable isomers have been characterized, ranging in mass number from 164 to 197. The most stable of these is 192m2Ir, which decays by
isomeric transition A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ha ...
with a half-life of 241 years, making it more stable than any of iridium's synthetic isotopes in their ground states. The least stable isomer is 190m3Ir with a half-life of only 2 μs. The isotope 191Ir was the first one of any element to be shown to present a
Mössbauer effect The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in ...
. This renders it useful for
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and abso ...
for research in physics, chemistry, biochemistry, metallurgy, and mineralogy.


Chemistry


Oxidation states

Iridium forms compounds in
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s between −3 and +9, but the most common oxidation states are +1, +3, and +4. Well-characterized compounds containing iridium in the +6 oxidation state include and the oxides and . iridium(VIII) oxide () was generated under matrix isolation conditions at 6 K in
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
. The highest oxidation state (+9), which is also the highest recorded for ''any'' element, is found in gaseous .


Binary compounds

Iridium does not form
binary Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that t ...
hydride In chemistry, a hydride is formally the anion of hydrogen( H−). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of ...
s. Only one binary oxide is well-characterized: Iridium dioxide, . It is a blue black solid that adopts the
fluorite structure In solid state chemistry, the fluorite structure refers to a common motif for compounds with the formula MX2. The X ions occupy the eight tetrahedral interstitial sites whereas M ions occupy the regular sites of a face-centered cubic (FCC) structure ...
. A
sesquioxide A sesquioxide is an oxide of an Chemical element, element (or Radical (chemistry), radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide and phosphorus(III) oxi ...
, , has been described as a blue-black powder, which is oxidized to by . The corresponding disulfides, diselenides, sesquisulfides, and sesquiselenides are known, as well as . Binary trihalides, are known for all of the halogens. For oxidation states +4 and above, only the
tetrafluoride A tetrafluoride is a chemical compound with four fluorines in its formula. List of tetrafluorides *Argon tetrafluoride, (hypothetical) *Berkelium tetrafluoride *Carbon tetrafluoride (tetrafluoromethane) *Diboron tetrafluoride, a colorless gas *Din ...
, pentafluoride and
hexafluoride A hexafluoride is a chemical compound with the general formula QXnF6, QXnF6m−, or QXnF6m+. Many molecules fit this formula. An important hexafluoride is hexafluorosilicic acid (H2SiF6), which is a byproduct of the mining of phosphate rock. In ...
are known. Iridium hexafluoride, , is a volatile yellow solid, composed of octahedral molecules. It decomposes in water and is reduced to ,. Iridium pentafluoride is also a strong oxidant, but it is a
tetramer A tetramer () (''tetra-'', "four" + '' -mer'', "parts") is an oligomer formed from four monomers or subunits. The associated property is called ''tetramery''. An example from inorganic chemistry is titanium methoxide with the empirical formula Ti ...
, , formed by four corner-sharing octahedra.


Complexes

The
coordination complex A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
es of iridium are extensive. Iridium in its complexes is always
low-spin Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity o ...
). Ir(III) and Ir(IV) generally form octahedral complexes. Polyhydride complexes are known for the +5 and +3 oxidation states. One example is . The ternary hydride is believed to contain both the and the 18-electron anion. Iridium also
oxyanion An oxyanion, or oxoanion, is an ion with the generic formula (where A represents a chemical element and O represents an oxygen atom). Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determine ...
s with oxidation states +4 and +5. and can be prepared from the reaction of
potassium oxide Potassium oxide ( K O) is an ionic compound of potassium and oxygen. It is a base. This pale yellow solid is the simplest oxide of potassium. It is a highly reactive compound that is rarely encountered. Some industrial materials, such as fertili ...
or
potassium superoxide Potassium superoxide is an inorganic compound with the formula KO2. It is a yellow paramagnetic solid that decomposes in moist air. It is a rare example of a stable salt of the superoxide anion. It is used as a scrubber, dehumidifier, and ge ...
with iridium at high temperatures. Such solids are not soluble in conventional solvents. As for many elements, the chlorides are key complexes. Hexachloroiridic (IV) acid, , and its ammonium salt are the most common iridium compounds from an industrial and preparative perspectives. They are intermediates in the purification of iridium and used as precursors for most other iridium compounds, as well as in the preparation of
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic is ...
coatings. The ion has an intense dark brown color, and can be readily reduced to the lighter-colored and vice versa.
Iridium trichloride Iridium(III) chloride is the inorganic compound with the formula IrCl3. The anhydrous compound is relatively rare, but the related hydrate is useful for preparing other iridium compounds. The anhydrous salt is a dark green crystalline solid. ...
, , which can be obtained in anhydrous form from direct oxidation of iridium powder by
chlorine Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate betwee ...
at 650 °C, or in hydrated form by dissolving in
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
, is often used as a starting material for the synthesis of other Ir(III) compounds. Another compound used as a starting material is ammonium hexachloroiridate(III), . In the presence of air, iridium metal dissolves in molten alkali-metal cyanides to produce the (hexacyanoiridate) ion.


Organoiridium chemistry

Organoiridium compound Organoiridium chemistry is the chemistry of organometallic compounds containing an iridium-carbon chemical bond. Organoiridium compounds are relevant to many important processes including olefin hydrogenation and the industrial synthesis of ...
s contain iridium–
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
bonds. Early studies identified the very stable
tetrairidium dodecacarbonyl Tetrairidium dodecacarbonyl is the chemical compound with the formula Ir4(CO)12. This tetrahedral cluster is the most common and most stable "binary" carbonyl of iridium. This air-stable species is only poorly soluble in organic solvents. It ha ...
, . In this compound, each of the iridium atoms is bonded to the other three, forming a tetrahedral cluster. The discovery of
Vaska's complex Vaska's complex is the trivial name for the chemical compound ''trans''-carbonylchlorobis(triphenylphosphine)iridium(I), which has the formula IrCl(CO) (C6H5)3sub>2. This square planar diamagnetic organometallic complex consists of a central iridi ...
() opened the door for
oxidative addition Oxidative addition and reductive elimination are two important and related classes of reactions in organometallic chemistry. Oxidative addition is a process that increases both the oxidation state and coordination number of a metal centre. Oxidat ...
reactions, a process fundamental to useful reactions. For example,
Crabtree's catalyst Crabtree's catalyst is an organoiridium compound with the formula ,5-Cyclooctadiene, C8H12IrTricyclohexylphosphine, P(C6H11)3pyridine, C5H5NF6. It is a homogeneous catalyst for hydrogenation and hydrogen-transfer reactions, developed by Robert ...
, a
homogeneous catalyst In chemistry, homogeneous catalysis is catalysis by a soluble catalyst in a solution. Homogeneous catalysis refers to reactions where the catalyst is in the same phase as the reactants, principally in solution. In contrast, heterogeneous catalysis ...
for
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a Catalysis, catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or S ...
reactions. Iridium complexes played a pivotal role in the development of
Carbon–hydrogen bond activation In organic chemistry, carbon–hydrogen bond functionalization ( functionalization) is a type of organic reaction in which a carbon–hydrogen bond is cleaved and replaced with a bond (where X is usually carbon, oxygen, or nitrogen). The term ...
(C–H activation), which promises to allow functionalization of hydrocarbons, which are traditionally regarded as unreactive.


History


Platinum group

The discovery of iridium is intertwined with that of platinum and the other metals of the platinum group. The first European reference to platinum appears in 1557 in the writings of the
Italian Italian(s) may refer to: * Anything of, from, or related to the people of Italy over the centuries ** Italians, an ethnic group or simply a citizen of the Italian Republic or Italian Kingdom ** Italian language, a Romance language *** Regional Ita ...
humanist
Julius Caesar Scaliger Julius Caesar Scaliger (; April 23, 1484 – October 21, 1558), or Giulio Cesare della Scala, was an Italian scholar and physician, who spent a major part of his career in France. He employed the techniques and discoveries of Renaissance humanism ...
as a description of an unknown noble metal found between Darién and Mexico, "which no fire nor any Spanish artifice has yet been able to liquefy". From their first encounters with platinum, the Spanish generally saw the metal as a kind of impurity in gold, and it was treated as such. It was often simply thrown away, and there was an official decree forbidding the
adulteration An adulterant is caused by the act of adulteration, a practice of secretly mixing a substance with another. Typical substances that are adulterated include but are not limited to food, cosmetics, pharmaceuticals, fuel, or other chemicals, that ...
of gold with platinum impurities. In 1735,
Antonio de Ulloa Antonio de Ulloa y de la Torre-Giralt, FRS, FRSA, KOS (12 January 1716 – 3 July 1795) was a Spanish naval officer, scientist, and administrator. At the age of nineteen, he joined the French Geodesic Mission to what is now the country o ...
and
Jorge Juan y Santacilia Jorge Juan y Santacilia (Novelda, Alicante, 5 January 1713 – Madrid, 21 June 1773) was a Spanish mathematician, scientist, naval officer, and mariner. He determined that the Earth is not perfectly spherical but is oblate, i.e. flattened at the ...
saw Native Americans mining platinum while the Spaniards were travelling through Colombia and Peru for eight years. Ulloa and Juan found mines with the whitish metal nuggets and took them home to Spain. Antonio de Ulloa returned to Spain and established the first mineralogy lab in Spain and was the first to systematically study platinum, which was in 1748. His historical account of the expedition included a description of platinum as being neither separable nor calcinable. Ulloa also anticipated the discovery of platinum mines. After publishing the report in 1748, Ulloa did not continue to investigate the new metal. In 1758, he was sent to superintend mercury mining operations in
Huancavelica Huancavelica () or Wankawillka in Quechua is a city in Peru. It is the capital of the department of Huancavelica and according to the 2017 census had a population of 49,570 people. The city was established on August 5, 1572 by the Viceroy ...
. In 1741, Charles Wood, a British
metallurgist Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
, found various samples of Colombian platinum in Jamaica, which he sent to
William Brownrigg William Brownrigg ( – 6 January 1800) was a British doctor and scientist, who practised at Whitehaven in Cumberland. While there, Brownrigg carried out experiments that earned him the Copley Medal in 1766 for his work on carbonic acid gas. He ...
for further investigation. In 1750, after studying the platinum sent to him by Wood, Brownrigg presented a detailed account of the metal to the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
, stating that he had seen no mention of it in any previous accounts of known minerals. Brownrigg also made note of platinum's extremely high melting point and refractoriness toward
borax Borax is a salt (ionic compound), a hydrated borate of sodium, with chemical formula often written . It is a colorless crystalline solid, that dissolves in water to make a basic solution. It is commonly available in powder or granular form, ...
. Other chemists across Europe soon began studying platinum, including
Andreas Sigismund Marggraf Andreas Sigismund Marggraf (; 3 March 1709 – 7 August 1782) was a German chemist from Berlin, then capital of the Margraviate of Brandenburg, and a pioneer of analytical chemistry. He isolated zinc in 1746 by heating Calamine (mineral), calamine ...
,
Torbern Bergman Torbern Olaf (Olof) Bergman (''KVO'') (20 March 17358 July 1784) was a Swedish chemist and mineralogist noted for his 1775 ''Dissertation on Elective Attractions'', containing the largest chemical affinity tables ever published. Bergman was the ...
,
Jöns Jakob Berzelius Jöns is a Swedish given name and a surname. Notable people with the given name include: * Jöns Jacob Berzelius (1779–1848), Swedish chemist * Jöns Budde (1435–1495), Franciscan friar from the Brigittine monastery in NaantaliVallis Grati ...
, William Lewis, and
Pierre Macquer Pierre-Joseph Macquer (9 October 1718 – 15 February 1784) was an influential French chemist. He is known for his ''Dictionnaire de chymie'' (1766). He was also involved in practical applications, to medicine and industry, such as the French dev ...
. In 1752, Henrik Scheffer published a detailed scientific description of the metal, which he referred to as "white gold", including an account of how he succeeded in fusing platinum ore with the aid of
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but ...
. Scheffer described platinum as being less pliable than gold, but with similar resistance to corrosion.


Discovery

Chemists who studied platinum dissolved it in aqua regia (a mixture of
hydrochloric Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the digestiv ...
and
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
s) to create soluble salts. They always observed a small amount of a dark, insoluble residue.
Joseph Louis Proust Joseph Louis Proust (26 September 1754 – 5 July 1826) was a French chemist. He was best known for his discovery of the law of definite proportions in 1794, stating that chemical compounds always combine in constant proportions. Life Joseph L. ...
thought that the residue was
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
. The French chemists Victor Collet-Descotils,
Antoine François, comte de Fourcroy Antoine is a French given name (from the Latin ''Antonius'' meaning 'highly praise-worthy') that is a variant of Danton, Titouan, D'Anton and Antonin. The name is used in France, Switzerland, Belgium, Canada, West Greenland, Haiti, French Guiana ...
, and
Louis Nicolas Vauquelin Prof. Louis Nicolas Vauquelin Royal Society of London, FRS(For) HFRSE (16 May 1763 – 14 November 1829) was a French pharmacist and chemist. He was the discoverer of both chromium and beryllium. Early life Vauquelin was born at Saint-André-d'H ...
also observed the black residue in 1803, but did not obtain enough for further experiments. In 1803, British scientist
Smithson Tennant Smithson Tennant FRS (30 November 1761 – 22 February 1815) was an English chemist. He is best known for his discovery of the elements iridium and osmium, which he found in the residues from the solution of platinum ores in 1803. He also cont ...
(1761–1815) analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with alkali and acids and obtained a volatile new oxide, which he believed to be of this new metal—which he named ''ptene'', from the Greek word ''ptēnós'', "winged". Tennant, who had the advantage of a much greater amount of residue, continued his research and identified the two previously undiscovered elements in the black residue, iridium and osmium. He obtained dark red crystals (probably of ]·''n'') by a sequence of reactions with
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
and
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
. He named iridium after
Iris Iris most often refers to: *Iris (anatomy), part of the eye *Iris (mythology), a Greek goddess * ''Iris'' (plant), a genus of flowering plants * Iris (color), an ambiguous color term Iris or IRIS may also refer to: Arts and media Fictional ent ...
(), the Greek winged goddess of the rainbow and the messenger of the Olympian gods, because many of the
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively cha ...
he obtained were strongly colored. Discovery of the new elements was documented in a letter to the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
on June 21, 1804.


Metalworking and applications

British scientist
John George Children John George Children FRS FRSE FLS PRES (18 May 1777 – 1 January 1852 in Halstead, Kent) was a British chemist, mineralogist and zoologist. He invented a method to extract silver from ore without the need for mercury. He was a friend of Sir ...
was the first to melt a sample of iridium in 1813 with the aid of "the greatest galvanic battery that has ever been constructed" (at that time). The first to obtain high-purity iridium was Robert Hare in 1842. He found it had a density of around and noted the metal is nearly immalleable and very hard. The first melting in appreciable quantity was done by
Henri Sainte-Claire Deville Henri is an Estonian, Finnish, French, German and Luxembourgish form of the masculine given name Henry. People with this given name ; French noblemen :'' See the ' List of rulers named Henry' for Kings of France named Henri.'' * Henri I de Mon ...
and
Jules Henri Debray Jules Henri Debray (26 July 1827, in Amiens – 19 July 1888, in Paris) was a French chemist. In 1847 he began his studies at the École Normale Supérieure in Paris, and several years later became an instructor at the Lycée Charlemagne (185 ...
in 1860. They required burning more than of pure and gas for each of iridium. These extreme difficulties in melting the metal limited the possibilities for handling iridium.
John Isaac Hawkins John Isaac Hawkins (1772–1855) was an inventor who practised civil engineering. He was known as the co-inventor of the ever-pointed pencil, an early mechanical pencil, and of the upright piano. Early life Hawkins was born 14 March 1772 at Taun ...
was looking to obtain a fine and hard point for fountain pen nibs, and in 1834 managed to create an iridium-pointed gold pen. In 1880, John Holland and
William Lofland Dudley William Lofland Dudley (April 16, 1859 – September 8, 1914) was an American chemistry professor at both the University of Cincinnati and Vanderbilt University and an athletics pioneer during the Progressive Era. At Vanderbilt, he was appoint ...
were able to melt iridium by adding
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
and patented the process in the United States; British company
Johnson Matthey Johnson Matthey is a British multinational speciality chemicals and sustainable technologies company headquartered in London, England. It is listed on the London Stock Exchange and is a constituent of the FTSE 250 Index. History Early years ...
later stated they had been using a similar process since 1837 and had already presented fused iridium at a number of World Fairs. The first use of an alloy of iridium with ruthenium in
thermocouple A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the ...
s was made by Otto Feussner in 1933. These allowed for the measurement of high temperatures in air up to . In Munich, Germany in 1957
Rudolf Mössbauer Rudolf Ludwig Mössbauer (German spelling: ''Mößbauer''; ; 31 January 1929 – 14 September 2011) was a German physicist best known for his 1957 discovery of ''recoilless nuclear resonance fluorescence'' for which he was awarded the 1961 Nobe ...
, in what has been called one of the "landmark experiments in twentieth-century physics", discovered the resonant and
recoil Recoil (often called knockback, kickback or simply kick) is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force requ ...
-free emission and absorption of
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s by atoms in a solid metal sample containing only 191Ir. This phenomenon, known as the
Mössbauer effect The Mössbauer effect, or recoilless nuclear resonance fluorescence, is a physical phenomenon discovered by Rudolf Mössbauer in 1958. It involves the resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei bound in ...
resulted in the awarding of the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 1961, at the age 32, just three years after he published his discovery.


Occurrence

Along with all elements having
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
s higher than that of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
, iridium is only naturally formed by the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", ...
(rapid neutron capture) in
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e and
neutron star merger A neutron star merger is a type of stellar collision. It occurs in a fashion similar to the rare brand of type Ia supernovae resulting from merging white dwarf stars. When two neutron stars orbit each other closely, they gradually spiral inw ...
s. Iridium is one of the nine least abundant stable elements in Earth's crust, having an average mass fraction of 0.001  ppm in crustal rock;
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Platinu ...
is 10 times more abundant,
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
is 40 times more abundant, and
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
and
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
are 80 times more abundant.
Tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
is about as abundant as iridium. In contrast to its low abundance in crustal rock, iridium is relatively common in
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
s, with concentrations of 0.5 ppm or more. The overall concentration of iridium on Earth is thought to be much higher than what is observed in crustal rocks, but because of the density and siderophilic ("iron-loving") character of iridium, it descended below the crust and into
Earth's core The internal structure of Earth is the solid portion of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere and solid mantle, a liquid outer core whose ...
when the planet was still molten. Iridium is found in nature as an uncombined element or in natural
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
s; especially the iridium–osmium alloys, osmiridium (osmium-rich), and iridosmium (iridium-rich). In the
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
deposits, the platinum group metals occur as
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds lar ...
s (i.e. (),
tellurides The telluride ion is the anion Te2− and its derivatives. It is analogous to the other chalcogenide anions, the lighter O2−, S2−, and Se2−, and the heavier Po2−. In principle, Te2− is formed by the two-e− reduction of telluri ...
(i.e. PtBiTe),
antimonide Antimonides (sometimes called stibnides) are compounds of antimony with more electropositive elements. The antimonide ion is Sb3−. Reduction of antimony by alkali metals or by other methods leads to alkali metal antimonides of various types. K ...
s (PdSb), and
arsenide In chemistry, an arsenide is a compound of arsenic with a less electronegative element or elements. Many metals form binary compounds containing arsenic, and these are called arsenides. They exist with many stoichiometries, and in this respect a ...
s (i.e. ). In all of these compounds, platinum is exchanged by a small amount of iridium and osmium. As with all of the platinum group metals, iridium can be found naturally in alloys with raw nickel or raw copper. A number of iridium-dominant minerals, with iridium as the species-forming element, are known. They are exceedingly rare and often represent the iridium analogues of the above-given ones. The examples are irarsite and cuproiridsite, to mention some. Within Earth's crust, iridium is found at highest concentrations in three types of geologic structure: igneous deposits (crustal intrusions from below), impact craters, and deposits reworked from one of the former structures. The largest known primary reserves are in the
Bushveld igneous complex The Bushveld Igneous Complex (BIC) is the largest layered igneous intrusion within the Earth's crust. It has been tilted and eroded forming the outcrops around what appears to be the edge of a great geological basin: the Transvaal Basin. It i ...
in South Africa, (near the largest known impact structure, the Vredefort impact structure) though the large copper–nickel deposits near Norilsk#Norilsk-Talnakh nickel deposits, Norilsk in Russia, and the Sudbury Basin (also an impact crater) in Canada are also significant sources of iridium. Smaller reserves are found in the United States. Iridium is also found in secondary deposits, combined with platinum and other platinum group metals in alluvium, alluvial deposits. The alluvial deposits used by pre-Columbian people in the Chocó Department of Colombia are still a source for platinum-group metals. As of 2003, world reserves have not been estimated.


Marine oceanography

Iridium is found within marine organisms, sediments, and the water column. The abundance of iridium in seawater and organisms is relatively low, as it does not readily form Transition metal chloride complex, chloride complexes. The abundance in organisms is about 20 parts per trillion, or about five orders of magnitude less than in sedimentary rocks at the Cretaceous–Paleogene boundary, Cretaceous–Paleogene (K–T) boundary. The concentration of iridium in seawater and marine sediment is sensitive to Oxygenation (environmental), marine oxygenation, seawater temperature, and various geological and biological processes. Iridium in sediments can come from cosmic dust, volcanoes, precipitation (chemistry), precipitation from seawater, microbial processes, or hydrothermal vents, and its abundance can be strongly indicative of the source. It tends to associate with other ferrous metals in manganese nodules. Iridium is one of the characteristic elements of extraterrestrial rocks, and, along with osmium, can be used as a tracer element for meteoritic material in sediment. For example core samples from the
Pacific Ocean The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean (or, depending on definition, to Antarctica) in the south, and is bounded by the continen ...
with elevated iridium levels suggested the
Eltanin impact The Eltanin impact is thought to be an asteroid impact in the eastern part of the South Pacific Ocean that occurred around the Pliocene-Pleistocene boundary approximately 2.51 ± 0.07  million years ago. The location was at the edge of th ...
of about 2.5 million years ago. Some of the mass extinctions, such as the Cretaceous extinction, can be identified by anomalously high concentrations of iridium in sediment, and these can be linked to major asteroid impacts.


Cretaceous–Paleogene boundary presence

The
Cretaceous–Paleogene boundary The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of ...
of 66 million years ago, marking the temporal border between the Cretaceous and Paleogene periods of Geologic time scale, geological time, was identified by a thin stratum of iridium anomaly, iridium-rich clay. A team led by Luis Walter Alvarez, Luis Alvarez proposed in 1980 an extraterrestrial origin for this iridium, attributing it to an asteroid or comet impact. Their theory, known as the
Alvarez hypothesis The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was c ...
, is now widely accepted to explain the extinction of the non-avian dinosaurs. A large buried impact crater structure with an estimated age of about 66 million years was later identified under what is now the Yucatán Peninsula (the
Chicxulub crater The Chicxulub crater () is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large a ...
). Dewey M. McLean and others argue that the iridium may have been of volcano, volcanic origin instead, because Earth's core is rich in iridium, and active volcanoes such as Piton de la Fournaise, in the island of Réunion, are still releasing iridium.


Production

Worldwide production of iridium is about . The price is high and varying (see table). Illustrative factors that affect the price include oversupply of Ir crucibles and changes in LED technology. Platinum metals occur together as dilute ores. Iridium is one of the rarer platinum metals: for every 190 tonnes of platinum obtained from ores, only 7.5 tonnes of iridium is isolated. To separate the metals, they must first be brought into Solution (chemistry), solution. Two methods for rendering Ir-containing ores soluble are (i) fusion of the solid with sodium peroxide followed by extraction of the resulting glass in aqua regia and (ii) extraction of the solid with a mixture of
chlorine Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate betwee ...
with
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid Acid strength is the tendency of an acid, symbol ...
. From soluble extracts, iridium is separated by precipitating solid ammonium hexachloroiridate () or by extracting with organic amines. The first method is similar to the procedure Tennant and Wollaston used for their original separation. The second method can be planned as continuous liquid–liquid extraction and is therefore more suitable for industrial scale production. In either case, the product, an iridium chloride salt, is reduced with hydrogen, yielding the metal as a powder or ''metal sponge, sponge'', which is amenable to
powder metallurgy Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and ...
techniques. Iridium is also obtained commercially as a by-product from
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
mining and processing. During Copper extraction techniques#Electrorefining, electrorefining of copper and nickel, noble metals such as silver, gold and the platinum group metals as well as selenium and tellurium settle to the bottom of the cell as ''anode mud'', which forms the starting point for their extraction.


Applications

The main areas of use of iridium are electrodes for producing chlorine and other aggressive products, OLEDs, crucibles, Cativa process, catalysts (e.g. acetic acid), and ignition tips for spark plugs.


Ir metal and alloys

Resistance to heat and corrosion are the bases for several uses of iridium and its alloys. Owing to its high melting point, hardness, and corrosion resistance, iridium is used to make crucibles. Such
crucible A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. While crucibles were historically usually made from clay, they can be made from any material that withstands te ...
s are used in the Czochralski process to produce oxide single-crystals (such as sapphires) for use in computer memory devices and in solid state lasers. The crystals, such as gadolinium gallium garnet and yttrium gallium garnet, are grown by melting pre-sintered charges of mixed oxides under oxidizing conditions at temperatures up to . Certain long-life aircraft engine parts are made of an iridium alloy, and an iridium–
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
alloy is used for deep-water pipes because of its corrosion resistance. Iridium is used for multi-pored Spinneret (polymers), spinnerets, through which a plastic polymer melt is extruded to form fibers, such as rayon. Osmium–iridium is used for compass bearings and for balances. Because of their resistance to arc erosion, iridium alloys are used by some manufacturers for electrical contacts for
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air ...
s, and iridium-based spark plugs are particularly used in aviation.


Catalysis

Iridium compounds are used as catalysis, catalysts in the Cativa process for carbonylation of methanol to produce acetic acid. Iridium complexes are often active for asymmetric hydrogenation both by traditional
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a Catalysis, catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or S ...
. and transfer hydrogenation. This property is the basis of the industrial route to the chiral herbicide (S)-metolachlor. As practiced by Syngenta on the scale of 10,000 tons/year, the complex [Ir(COD)Cl]2 in the presence of Josiphos ligands.


Medical imaging

The radioisotope iridium-192 is one of the two most important sources of energy for use in industrial Industrial radiography#Radioisotope sources, γ-radiography for non-destructive testing of
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s. Additionally, 192Ir is used as a source of gamma radiation for the treatment of cancer using
brachytherapy Brachytherapy is a form of radiation therapy where a sealed radiation source is placed inside or next to the area requiring treatment. ''Brachy'' is Greek for short. Brachytherapy is commonly used as an effective treatment for cervical, prost ...
, a form of radiotherapy where a sealed radioactive source is placed inside or next to the area requiring treatment. Specific treatments include high-dose-rate prostate brachytherapy, biliary duct brachytherapy, and intracavitary cervix brachytherapy. iridium-192 is normally produced by neutron activation of isotop iridium-191 in natural-abundance iridium metal


Photocatalysis and OLEDs

Iridium complexes are key components of white OLEDs. Similar complexes are used in photocatalysis.


Scientific

An alloy of 90% platinum and 10% iridium was used in 1889 to construct the International Prototype Metre and Kilogram#International prototype kilogram, kilogram mass, kept by the Bureau International des Poids et Mesures, International Bureau of Weights and Measures near Paris. The meter bar was replaced as the definition of the fundamental unit of length in 1960 by a line in the atomic spectrum of Krypton#Metric role, krypton, but the kilogram prototype remained the international standard of mass 2019 redefinition of SI base units, until 20 May 2019, when the kilogram was redefined in terms of the Planck constant.


Historical

Iridium–osmium alloys were used in fountain pen Nib (pen)#Nib tipping, nib tips. The first major use of iridium was in 1834 in nibs mounted on gold. Since 1944, the famous Parker 51 fountain pen was fitted with a nib tipped by a ruthenium and iridium alloy (with 3.8% iridium). The tip material in modern fountain pens is still conventionally called "iridium", although there is seldom any iridium in it; other metals such as ruthenium, osmium, and tungsten have taken its place. An iridium–platinum alloy was used for the touch holes or vent pieces of cannon. According to a report of the Exposition Universelle (1867), Paris Exhibition of 1867, one of the pieces being exhibited by Johnson and Matthey "has been used in a Whitworth gun for more than 3000 rounds, and scarcely shows signs of wear yet. Those who know the constant trouble and expense which are occasioned by the wearing of the vent-pieces of cannon when in active service, will appreciate this important adaptation". The pigment ''iridium black'', which consists of very finely divided iridium, is used for painting porcelain an intense black; it was said that "all other porcelain black colors appear grey by the side of it".


Precautions

Iridium in bulk metallic form is not biologically important or hazardous to health due to its lack of reactivity with tissues; there are only about 20 parts per notation, parts per trillion of iridium in human tissue. Like most metals, finely divided iridium powder can be hazardous to handle, as it is an irritant and may ignite in air. By 2015 very little is known about the toxicity of iridium compounds, primarily because it is used so rarely that few people come in contact with it and those who do only with very small amounts. However, soluble salts, such as the iridium halides, could be hazardous due to elements other than iridium or due to iridium itself. At the same time, most iridium compounds are insoluble, which makes absorption into the body difficult. A radioisotope of iridium, , is dangerous, like other radioactive isotopes. The only reported injuries related to iridium concern accidental exposure to radiation from used in
brachytherapy Brachytherapy is a form of radiation therapy where a sealed radiation source is placed inside or next to the area requiring treatment. ''Brachy'' is Greek for short. Brachytherapy is commonly used as an effective treatment for cervical, prost ...
. High-energy gamma radiation from can increase the risk of cancer. External exposure can cause burns, radiation poisoning, and death. Ingestion of 192Ir can burn the linings of the stomach and the intestines. 192Ir, 192mIr, and 194mIr tend to deposit in the liver, and can pose health hazards from both Gamma radiation, gamma and Beta particle, beta radiation.


Notes


References


External links


Iridium
at ''The Periodic Table of Videos'' (University of Nottingham)
Iridium in Encyclopædia Britannica
{{Authority control Iridium, Chemical elements Transition metals Precious metals Noble metals Impact event minerals Meteorite minerals Native element minerals Chemical elements with face-centered cubic structure