Induced Metric
   HOME

TheInfoList



OR:

In mathematics and
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experi ...
, the induced metric is the metric tensor defined on a submanifold that is induced from the metric tensor on a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
into which the submanifold is embedded, through the pullback. It may be determined using the following formula (using the
Einstein summation convention In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
), which is the component form of the pullback operation: :g_ = \partial_a X^\mu \partial_b X^\nu g_\ Here a, b describe the indices of coordinates \xi^a of the submanifold while the functions X^\mu(\xi^a) encode the embedding into the higher-dimensional manifold whose tangent indices are denoted \mu, \nu.


Example – curve on a torus

Let : \Pi\colon \mathcal \to \mathbb^3,\ \tau \mapsto \begin\beginx^1&= (a+b\cos(n\cdot \tau))\cos(m\cdot \tau)\\x^2&=(a+b\cos(n\cdot \tau))\sin(m\cdot \tau)\\x^3&=b\sin(n\cdot \tau).\end \end be a map from the domain of the curve \mathcal with parameter \tau into the Euclidean manifold \mathbb^3. Here a,b,m,n\in\mathbb are constants. Then there is a metric given on \mathbb^3 as :g=\sum\limits_g_\mathrmx^\mu\otimes \mathrmx^\nu\quad\text\quad g_ = \begin1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end . and we compute :g_=\sum\limits_\frac\frac\underbrace_ = \sum\limits_\mu\left(\frac\right)^2=m^2 a^2+2m^2ab\cos(n\cdot \tau)+m^2b^2\cos^2(n\cdot \tau)+b^2n^2 Therefore g_\mathcal=(m^2 a^2+2m^2ab\cos(n\cdot \tau)+m^2b^2\cos^2(n\cdot \tau)+b^2n^2) \, \mathrm\tau\otimes \mathrm\tau


See also

* First fundamental form


References

{{Reflist Differential geometry