Immune Complexes
   HOME

TheInfoList



OR:

An immune complex, sometimes called an antigen-antibody complex or antigen-bound antibody, is a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
formed from the binding of multiple
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respons ...
s to antibodies. The bound antigen and antibody act as a unitary object, effectively an antigen of its own with a specific
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The epitope is the specific piece of the antigen to which an antibody binds. The p ...
. After an antigen-antibody reaction, the immune complexes can be subject to any of a number of responses, including
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
deposition,
opsonization Opsonins are extracellular proteins that, when bound to substances or cells, induce phagocytes to phagocytose the substances or cells with the opsonins bound. Thus, opsonins act as tags to label things in the body that should be phagocytosed (i.e. ...
,
phagocytosis Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is ...
, or processing by
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the ...
s.
Red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
s carrying CR1-receptors on their surface may bind
C3b C3b is the larger of two elements formed by the cleavage of complement component 3, and is considered an important part of the innate immune system. C3b is potent in opsonization: tagging pathogens, immune complexes (antigen-antibody), and apopto ...
-coated immune complexes and transport them to
phagocyte Phagocytes are cells that protect the body by ingesting harmful foreign particles, bacteria, and dead or dying cells. Their name comes from the Greek ', "to eat" or "devour", and "-cyte", the suffix in biology denoting "cell", from the Greek ...
s, mostly in liver and
spleen The spleen is an organ found in almost all vertebrates. Similar in structure to a large lymph node, it acts primarily as a blood filter. The word spleen comes .
, and return to the general circulation. The ratio of antigen to antibody determines size and shape of immune complex. This, in turn, determines the effect of the immune complex. Many innate immune cells have FcRs, which are membrane-bound receptors that bind the constant regions of antibodies. Most FcRs on innate immune cells have low affinity for a singular antibody, and instead need to bind to an immune complex containing multiple antibodies in order to begin their intracellular signaling pathway and pass along a message from outside to inside of the cell. Additionally, the grouping and binding together of multiple immune complexes allows for an increase in the avidity, or strength of binding, of the FcRs. This allows innate immune cells to get multiple inputs at once and prevents them from being activated early. Immune complexes may themselves cause illness when they are deposited in organs, for example, in certain forms of
vasculitis Vasculitis is a group of disorders that destroy blood vessels by inflammation. Both arteries and veins are affected. Lymphangitis (inflammation of lymphatic vessels) is sometimes considered a type of vasculitis. Vasculitis is primarily caused ...
. This is the third form of
hypersensitivity Hypersensitivity (also called hypersensitivity reaction or intolerance) refers to undesirable reactions produced by the normal immune system, including allergies and autoimmunity. They are usually referred to as an over-reaction of the immune ...
in the Gell-Coombs classification, called
type III hypersensitivity Type III hypersensitivity, in the Gell and Coombs classification of allergic reactions, occurs when there is accumulation of immune complexes (antigen-antibody complexes) that have not been adequately cleared by innate immune cells, giving rise ...
. Such hypersensitivity progressing to disease states produces the immune complex diseases. Immune complex deposition is a prominent feature of several autoimmune diseases, including
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are invol ...
,
scleroderma Scleroderma is a group of autoimmune diseases that may result in changes to the skin, blood vessels, muscles, and internal organs. The disease can be either localized to the skin or involve other organs, as well. Symptoms may include areas ...
and Sjögren's syndrome. An inability to degrade immune complexes in the
lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane pr ...
and subsequent accumulation on the surface of immune cells has been associated with systemic lupus erythematosus.


Functions


Regulation of antibody production

Immune complexes can also play a role in the regulation of antibody production. B cells express
B-cell receptor The B cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, ...
s (BCRs) on their surfaces and antigen binding to these receptors begins a signaling cascade that leads to activation. B cells also express FcγRIIb, low affinity receptors specific to the constant region of IgG, on their surfaces.
IgG Immunoglobulin G (Ig G) is a type of antibody. Representing approximately 75% of serum antibodies in humans, IgG is the most common type of antibody found in blood circulation. IgG molecules are created and released by plasma B cells. Each IgG ...
immune complexes are the
ligand In coordination chemistry, a ligand is an ion or molecule ( functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's elec ...
for these receptors and immune complex binding to these receptors induces apoptosis, or cell death. After B cells are activated, they differentiate into plasma cells and cease to express BCR but continue to express FcγRIIb, which allows IgG immune complexes to regulate IgG production via negative feedback and prevent uncontrolled IgG production.


Activation of dendritic cells and macrophages

Immune complexes, particularly those made of IgG, also play a variety of roles in the activation and regulation of phagocytes, which include dendritic cells (DCs) and macrophages. Immune complexes are better at inducing DC maturation than an antigen on its own. Again, the low affinity of many FcγR for IgG means that only immune complexes, not single antibodies, can induce the FcγR’s signaling cascade. When compared to single antibodies binding to FcγRs, immune complexes binding to FcγRs cause significant changes in internalization and processing of antigen, maturation of the vesicles containing the internalized antigen, and activation in DCs and macrophages. There are multiple classes of macrophages and DCs that express different FcγRs, which have differing affinities for single antibodies and immune complexes. This allows the response of the DC or macrophage to be tuned precisely, subsequently tuning the level of IgG. These diverse FcγRs cause different responses in their DCs or macrophages by initiating different signaling pathways that can either activate or inhibit cellular functions. The binding of the immune complex to the DC’s membrane-bound receptor and internalization of the immune complex and receptor begins the process of antigen presentation, which allows the DC to activate T cells. Via this process, immune complexes cause enhanced T cell activation.


Elimination of opsonized immune complexes

Type I FcγRs, another type of IgG constant region receptor, can bind to IgG immune complexes and lead to the elimination of the opsonized complex. Immune complexes bind to multiple type I FcγRs, which cluster on the cell surface and begin the ITAM signaling pathway. This signaling pathway involves the phosphorylation of specific amino acids within a sequence of proteins and eventually leads to elimination of opsonized immune complex.


References

{{Authority control Immunology Immune system