Iamond Began His Reply, In The Column
   HOME

TheInfoList



OR:

A polyiamond (also polyamond or simply iamond, or sometimes triangular polyomino) is a polyform whose base form is an equilateral triangle. The word ''polyiamond'' is a
back-formation In etymology, back-formation is the process or result of creating a new word via inflection, typically by removing or substituting actual or supposed affixes from a lexical item, in a way that expands the number of lexemes associated with the c ...
from ''
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the Chemical stability, chemically stable form of car ...
'', because this word is often used to describe the shape of a pair of equilateral triangles placed base to base, and the initial 'di-' looks like a Greek prefix meaning 'two-' (though ''diamond'' actually derives from Greek '' ἀδάμας'' - also the basis for the word "adamant"). The name was suggested by recreational mathematics writer Thomas H. O'Beirne in ''New Scientist'' 1961 number 1, page 164.


Counting

The basic combinatorial question is, How many different polyiamonds exist with a given number of cells? Like polyominoes, polyiamonds may be either free or one-sided. Free polyiamonds are invariant under reflection as well as translation and rotation. One-sided polyiamonds distinguish reflections. The number of free ''n''-iamonds for ''n'' = 1, 2, 3, ... is: :1, 1, 1, 3, 4, 12, 24, 66, 160, ... . The number of free polyiamonds with holes is given by ; the number of free polyiamonds without holes is given by ; the number of fixed polyiamonds is given by ; the number of one-sided polyiamonds is given by . Some authors also call the diamond ( rhombus with a 60° angle) a ''calisson'' after the French sweet of similar shape.


Symmetries

Possible
symmetries Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
are mirror symmetry, 2-, 3-, and 6-fold rotational symmetry, and each combined with mirror symmetry. 2-fold rotational symmetry with and without mirror symmetry requires at least 2 and 4 triangles, respectively. 6-fold rotational symmetry with and without mirror symmetry requires at least 6 and 18 triangles, respectively. Asymmetry requires at least 5 triangles. 3-fold rotational symmetry without mirror symmetry requires at least 7 triangles. In the case of only mirror symmetry we can distinguish having the symmetry axis aligned with the grid or rotated 30° (requires at least 4 and 3 triangles, respectively); ditto for 3-fold rotational symmetry, combined with mirror symmetry (requires at least 18 and 1 triangles, respectively).


Generalizations

Like polyominoes, but unlike polyhexes, polyiamonds have three-
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
al counterparts, formed by aggregating
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
. However, polytetrahedra do not tile 3-space in the way polyiamonds can tile 2-space.


Tessellations

Every polyiamond of order 8 or less tiles the plane, except for the V-heptiamond. "All of the polyiamonds of order eight or less, with the exception of one of the heptiamonds will tessellate the plane. The exception is the V-shaped heptiamond. Gardner (6th book p.248) posed the problem of identifying this heptiamond and reproduced an impossibilty proof of Gregory. However, in combination with other heptiamonds or other polyiamonds, tesselations using this V-shaped heptiamond can be achieved."
/ref>


Correspondence with polyhexes

Every polyiamond corresponds to a polyhex, as illustrated at right. Conversely, every polyhex is also a polyiamond, because each hexagonal cell of a polyhex is the union of six adjacent equilateral triangles. (Note, however, that neither correspondence is one-to-one.)


In popular culture

The set of 22 polyiamonds, from order 1 up to order 6, constitutes the shape of the playing pieces in the board game
Blokus Trigon Blokus ( ) is an abstract strategy board game for two to four players, where players try to score points by occupying most of the board with pieces of their colour. The board is a square regular grid and the pieces are polyominoes. It was design ...
, where players attempt to tile a plane with as many polyiamonds as possible, subject to the game rules.


See also

*
Triangular tiling In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
*
Rhombille tiling In geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape ar ...
*
Sphinx tiling In geometry, the sphinx tiling is a tessellation of the plane using the "sphinx", a pentagonal hexiamond formed by gluing six equilateral triangles together. The resultant shape is named for its reminiscence to the Great Sphinx at Giza. A sphin ...


External links

*
Polyiamonds
a

Polyiamond tilings.
VERHEXT
— a 1960s puzzle game by Heinz Haber based on hexiamonds ()


References

{{Polyforms Polyforms