Hemi-icosahedron
   HOME

TheInfoList



OR:

A hemi-icosahedron is an
abstract regular polyhedron In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines. A geometric polytope is said to be ...
, containing half the faces of a
regular icosahedron In geometry, a regular icosahedron ( or ) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It ...
. It can be realized as a
projective polyhedron In geometry, a (globally) projective polyhedron is a tessellation of the real projective plane. These are projective analogs of spherical polyhedra – tessellations of the sphere – and toroidal polyhedra – tessellations of the toroids. Projec ...
(a
tessellation A tessellation or tiling is the covering of a surface, often a plane (mathematics), plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to high-dimensional ...
of the
real projective plane In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
by 10 triangles), which can be visualized by constructing the projective plane as a
hemisphere Hemisphere refers to: * A half of a sphere As half of the Earth * A hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphere ** Western Hemisphere ** Land and water hemispheres * A half of the (geocentric) celes ...
where opposite points along the boundary are connected and dividing the hemisphere into three equal parts.


Geometry

It has 10 triangular faces, 15 edges, and 6 vertices. It is also related to the nonconvex
uniform polyhedron In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also fa ...
, the
tetrahemihexahedron In geometry, the tetrahemihexahedron or hemicuboctahedron is a uniform star polyhedron, indexed as U4. It has 7 faces (4 triangles and 3 squares), 12 edges, and 6 vertices. Its vertex figure is a crossed quadrilateral. Its Coxeter–Dynkin dia ...
, which could be topologically identical to the hemi-icosahedron if each of the 3 square faces were divided into two triangles.


Graphs

It can be represented symmetrically on faces, and vertices as
Schlegel diagram In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the orig ...
s:


The complete graph K6

It has the same vertices and edges as the 5-dimensional 5-simplex which has a complete graph of edges, but only contains half of the (20) faces. From the point of view of
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
this is an embedding of K_6 (the
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
with 6 vertices) on a
real projective plane In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
. With this embedding, the
dual graph In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-lo ...
is the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is n ...
--- see
hemi-dodecahedron A hemi-dodecahedron is an abstract regular polyhedron, containing half the faces of a regular dodecahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 6 pentagons), which can be visualized by const ...
.


See also

* 11-cell - an abstract regular 4-polytope constructed from 11 hemi-icosahedra. *
hemi-dodecahedron A hemi-dodecahedron is an abstract regular polyhedron, containing half the faces of a regular dodecahedron. It can be realized as a projective polyhedron (a tessellation of the real projective plane by 6 pentagons), which can be visualized by const ...
* hemi-cube *
hemi-octahedron A hemi-octahedron is an abstract regular polyhedron, containing half the faces of a regular octahedron. It has 4 triangular faces, 6 edges, and 3 vertices. Its dual polyhedron is the hemicube. It can be realized as a projective polyhedron (a te ...


References

* {{citation , last1 = McMullen , first1 = Peter , author1-link = Peter McMullen , first2 = Egon , last2 = Schulte , chapter = 6C. Projective Regular Polytopes , title = Abstract Regular Polytopes , edition = 1st , publisher = Cambridge University Press , isbn = 0-521-81496-0 , date=December 2002 , pages
162–165


External links


The hemi-icosahedron
Projective polyhedra