HLA-DM Transport And Functions From The ER To The Cell Surface Of An APC
   HOME

TheInfoList



OR:

HLA-DM (human leukocyte antigen DM) is an
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
protein involved in the mechanism of antigen presentation on
antigen presenting cells An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using ...
(APCs) of the immune system. It does this by assisting in peptide loading of
major histocompatibility complex The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are calle ...
(MHC) class II membrane-bound proteins. HLA-DM is encoded by the genes
HLA-DMA HLA class II histocompatibility antigen, DM alpha chain is a protein that in humans is encoded by the ''HLA-DMA'' gene. HLA-DMA belongs to the HLA class II alpha chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DMA ...
and
HLA-DMB HLA class II histocompatibility antigen, DM beta chain is a protein that in humans is encoded by the ''HLA-DMB'' gene. Function HLA-DMB belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an ...
. HLA-DM is a molecular chaperone that works in
lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane prot ...
s and
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane can ...
s in cells of the immune system. It works in APCs like
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cel ...
s,
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
s, and
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or ...
s by interacting with MHC class II molecules. HLA-DM protects the MHC class II molecules from breaking down, and regulates which proteins or peptides bind to them as well. This regulates how and when a peptide acts as an antigen initiating an immune response. Thus, HLA-DM is necessary for the immune system to respond effectively to a foreign invader. Impairment in HLA-DM function can result in
immunodeficiency Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that a ...
and
autoimmune disease An autoimmune disease is a condition arising from an abnormal immune response to a functioning body part. At least 80 types of autoimmune diseases have been identified, with some evidence suggesting that there may be more than 100 types. Nearly a ...
s.


Genetics

The genes for HLA-DM are located in the MHCII region of the human chromosome 6. The genes code for the alpha and beta chains that make up the protein. The gene is nonpolymorphic.


Function


MHC class II + peptide interactions

HLA-DM is an integral protein in the mechanism regulating which antigens are presented extracellularly on APCs. It binds partially to the peptide-binding groove of MHC class II molecules. This can affect how well your immune system responds to foreign invaders. HLA-DM is required to release
CLIP Clip or CLIP may refer to: Fasteners * Hair clip, a device used to hold hair together or attaching materials such as caps to the hair * Binder clip, a device used for holding thicker materials (such as large volumes of paper) together ** Bulldog ...
from MHC class II molecules, to chaperone empty MHC molecules against denaturation, and to control proper loading and release of peptides at the peptide-binding groove. It also interacts heavily with chaperone protein
HLA-DO Human leukocyte histocompatibility complex DO (HLA-DO) is an intracellular, dimeric non-classical Major Histocompatibility Complex (MHC) class II protein composed of α- and β-subunits which interact with HLA-DM in order to fine tune immunod ...
. All of this ensures proper antigen presentation by an APC, to activate other immune cells. This is critical to rid the body of harmful infections. For example, proper antigen presentation benefits T cell activation, and memory T cell survival and generation. Without it, T cells leaving their site of production and entering the circulatory vessels of the body will not be activated against a danger. The immune system will not be able to kill dangerous or infected cells, and will not react quickly against a second infection.


MHC class II molecule stabilization - chaperonal function

The low pH of lysosomes could cause denaturation or proteolysis of MHC class II molecules. HLA-DM binding to MHC stabilizes and protects from degradation, by covering hydrophobic surfaces. Antigen degradation could also ensue, resulting in an inability to bind to the peptide-binding groove. Thus, HLA-DM is needed to protect proteins against the lysosomal environment.


CLIP release

In order to ensure that no false peptides bind to an MHC class II molecule, the peptide-binding groove is occupied by a protein called CLIP. Once a proper peptide is encountered, HLA-DM catalyzes the exchange of CLIP for an antigen peptide. Often, this peptide is retrieved directly from the B cell receptor which internalized it. Through expulsion of CLIP at the proper time, HLA-DM ensures that the correct antigen can bind to MHC molecules and prevent either from degrading.


Antigen loading and release

Apart from CLIP-antigen exchange, HLA-DM also facilitates antigen-antigen exchange. It releases weakly bound peptides from the groove to load peptides with higher-affinity binding. This process occurs in endosomes once they have left the ER containing MHC and HLA-DM that have fused with antigen-containing lysosomes. Kinetic analysis studies have shown that HLA-DM loading occurs quickly and in many endosomes. Along the membrane of an endosome at the optimal acidity (pH=5.0), HLA-DM loads 3 to 12 peptides onto different MHC molecules per minute. HLA-DM assists in catalysis of peptide exchange not only in late endosomes traveling from the ER, but also on cell membranes and in early endosomes. Much of this pathway is still being researched, but it is known that HLA-DM can load exogenous peptides onto MHC class II molecules when they are being expressed on cell surfaces. Loading can also occur in early endosomes that are quickly recycled. In both of these areas, loading occurs slower due to an altered pH environment. ''Release'' To release peptides from the MHC groove, HLA-DM binds to the N terminus of the groove, altering its conformation and breaking hydrogen bonds such that the peptide that was interacting with the MHC groove can no longer bind and is ejected. ''Loading'' Quick loading of peptides, facilitated by a stable MHC-DM complex, decreases the chances of those peptides being broken down by the proteolytic environment in the endosome. HLA-DM dissociates from the MHC once a stable enough peptide has bound. Thus, only antigens that can "outcompete" others by binding strongly enough to the groove end up on the surface of the antigen presenting cells in MHC class II molecules.


Interaction with HLA-DO

HLA-DM also binds to HLA-DO, another non-classical MHC molecule. HLA-DO starts binding to DM in early endosomes, but is expressed less in late endosomes/lysosomes. The binding between HLA-DM and HLA-DO is less strong at low pH, but overall much stronger than HLA-DM binding to MHC molecules. Before encountering an antigen, DO acts as a chaperone of DM to stabilize it against denaturation and direct it into lysosomes. It binds in the same location to HLA-DM as MHC class II molecules bind, thereby preventing HLA-DM from binding to MHC class II molecules. This inhibits peptide exchange catalysis and keeps CLIP in the MHC groove until antigen-containing lysosome fuses with DM/DO/MHC containing lysosomes, prompting the degradation of HLA-DO molecules in MIICs.


Structure and binding

HLA-DM contains a
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
class II histocompatibility antigen, alpha domain and a
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
Immunoglobulin C1-set domain C1-set domains are classical Ig-like domains resembling the antibody constant domain. C1-set domains are found almost exclusively in molecules involved in the immune system, such as in immunoglobulin light and heavy chains, in the major histocompa ...
. Research in
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
has resulted in advanced knowledge on HLA-DM structure, and how it binds to its substrates (HLA-DO and MHC class II molecules).


HLA-DM Structure

The structure and sequence of HLA-DM proteins is very similar to other MHC class II molecules, all of which consist of a heterodimer composed of an alpha and beta chain. However, HLA-DM differs in that it is nonclassical (meaning it lacks a transport signal N-terminus), and does not have the capability to bind peptides. This is due to lack of a deep peptide binding groove – instead, it contains a shallow, negatively charged indent with two disulfide bonds. On its beta chain cytoplasmic tail, a tyrosine-based motif YTPL regulates trafficking to specific endosomal compartments called MHC class II compartments (MIICs) from the ER.


Binding with MHC class II

HLA-DM catalyzes peptide exchange through binding at the beta chain of MHC class II molecules, which alters the conformation of the MHC and its peptide-binding groove. HLA-DM conformation stays constant. When a peptide is bound to the P1 locus in the peptide binding groove, it is stably bound. This also hinders HLA-DM binding to the MHC, preventing destabilization of the peptide-MHC interaction. Peptides also bind to the C-terminal site of the binding groove, but in this case the binding is a weak association, leaving the N-terminal of the groove open. HLA-DM can then bind to the N-terminal and allowing for peptide exchange.


Binding with HLA-DO

HLA-DO binds to the same regions of HLA-DM as MHC class II molecules do, such that it blocks the ability of HLA-DM to bind with MHC. Thus, you can never have a complex containing HLA-DM, HLA-DO, and MHC class II molecules.


Expression and Location

Intracellularly, HLA-DM is translated in the endoplasmic reticulum, then transported to endosomal MHC class II compartments (MIICs). MIICs then join with endosomes containing MHC class II molecules bound to CLIP. Here, the HLA-DM begins editing the MHC peptide binding. HLA-DM is also expressed on the surface of B cells and dendritic cells, as well as in secreted exosomes. During B cell development, HLA-DM is first expressed in early stages in the bone marrow. Expression then remains high throughout development and a B cell’s life, until the B cell differentiates into a plasma cell and HLA-DM expression then decreases. Within the body, highest levels of HLA-DM expression is found in lymph nodes, the spleen, and bone marrow.


Role in Disease and Medicine


Immunodeficiency

In individuals lacking functional HLA-DM molecules, improper antigen presentation occurs, resulting in unwanted immune responses or lack of a response when danger is present. This has been shown experimentally through mouse knockout models. There will be an increase of CLIP, instead of peptide, presentation on APC surfaces. This can result in autoimmunity, if a T cell receptors recognize CLIP as a harmful antigen. There could also be no protein presentation at all, resulting in a lack of immune response.


Infections and Disease

''Type 1 diabetes'' is correlated with DM activation, which is hypothesized to be due to DM positively modulating the expression of disease-causing peptides in the MHC groove and thus presented to responding T cells. Experiments using the mouse model of type 1 diabetes which blocked DM or reduced its activity by overexpressing DO found a decrease in diabetes. HLA-DM is implicated in viral infections like ''Herpes Simplex Virus Type 1''. This virus causes uneven distribution of HLA-DM in endosomes, prevents peptide catalysis, and prevents presentation of MHC class II molecules on the cell surface. HLA-DM is also implicated in celiac disease, multiple sclerosis, other autoimmune diseases, and leukemia.


References


External links


Overview
at
Davidson College Davidson College is a private liberal arts college in Davidson, North Carolina. It was established in 1837 by the Concord Presbytery and named after Revolutionary War general William Lee Davidson, who was killed at the nearby Battle of Cowan ...
(student generated)

Protein Data Bank {{Surface antigens MHC class II