HOME

TheInfoList



OR:

Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. There are three general branches of spectral imagers. There are push broom scanners and the related whisk broom scanners (spatial scanning), which read images over time, band sequential scanners (spectral scanning), which acquire images of an area at different wavelengths, and snapshot hyperspectral imaging, which uses a
staring array A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purpos ...
to generate an image in an instant. Whereas the
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
sees color of visible light in mostly three bands (long wavelengths - perceived as red, medium wavelengths - perceived as green, and short wavelengths - perceived as blue), spectral imaging divides the spectrum into many more bands. This technique of dividing images into bands can be extended beyond the visible. In hyperspectral imaging, the recorded spectra have fine wavelength resolution and cover a wide range of wavelengths. Hyperspectral imaging measures continuous spectral bands, as opposed to multiband imaging which measures spaced spectral bands. Engineers build hyperspectral sensors and processing systems for applications in astronomy, agriculture, molecular biology, biomedical imaging, geosciences, physics, and surveillance. Hyperspectral sensors look at objects using a vast portion of the electromagnetic spectrum. Certain objects leave unique 'fingerprints' in the electromagnetic spectrum. Known as spectral signatures, these 'fingerprints' enable identification of the materials that make up a scanned object. For example, a spectral signature for oil helps geologists find new
oil field A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presence ...
s.


Sensors

Figuratively speaking, hyperspectral sensors collect information as a set of 'images'. Each image represents a narrow wavelength range of the electromagnetic spectrum, also known as a spectral band. These 'images' are combined to form a three-dimensional (''x'',''y'',''λ'') hyperspectral
data cube In computer programming contexts, a data cube (or datacube) is a multi-dimensional ("n-D") array of values. Typically, the term data cube is applied in contexts where these arrays are massively larger than the hosting computer's main memory; exam ...
for processing and analysis, where ''x'' and ''y'' represent two spatial dimensions of the scene, and ''λ'' represents the spectral dimension (comprising a range of wavelengths). Technically speaking, there are four ways for sensors to sample the hyperspectral cube: Spatial scanning, spectral scanning, snapshot imaging,http://www.bodkindesign.com/wp-content/uploads/2012/09/Hyperspectral-1011.pdf and spatio-spectral scanning. Hyperspectral cubes are generated from airborne sensors like NASA's '' Airborne Visible/Infrared Imaging Spectrometer'' (AVIRIS), or from satellites like NASA's EO-1 with its hyperspectral instrument Hyperion.Schurmer, J.H., (Dec 2003), Air Force Research Laboratories Technology Horizons However, for many development and validation studies, handheld sensors are used.Ellis, J., (Jan 2001)
Searching for oil seeps and oil-impacted soil with hyperspectral imagery
,'' Earth Observation Magazine.
The precision of these sensors is typically measured in spectral resolution, which is the width of each band of the spectrum that is captured. If the scanner detects a large number of fairly narrow frequency bands, it is possible to identify objects even if they are only captured in a handful of pixels. However, spatial resolution is a factor in addition to spectral resolution. If the pixels are too large, then multiple objects are captured in the same pixel and become difficult to identify. If the pixels are too small, then the intensity captured by each sensor cell is low, and the decreased
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in deci ...
reduces the reliability of measured features. The acquisition and processing of hyperspectral images is also referred to as imaging spectroscopy or, with reference to the hyperspectral cube, as 3D spectroscopy.


Scanning techniques

There are four basic techniques for acquiring the three-dimensional (''x'', ''y'', ''λ'') dataset of a hyperspectral cube. The choice of technique depends on the specific application, seeing that each technique has context-dependent advantages and disadvantages.


Spatial scanning

In spatial scanning, each two-dimensional (2-D) sensor output represents a full slit spectrum (''x'', ''λ''). Hyperspectral imaging (HSI) devices for spatial scanning obtain slit spectra by projecting a strip of the scene onto a slit and dispersing the slit image with a prism or a grating. These systems have the drawback of having the image analyzed per lines (with a push broom scanner) and also having some mechanical parts integrated into the optical train. With these '' line-scan cameras'', the spatial dimension is collected through platform movement or scanning. This requires stabilized mounts or accurate pointing information to ‘reconstruct’ the image. Nonetheless, line-scan systems are particularly common in remote sensing, where it is sensible to use mobile platforms. Line-scan systems are also used to scan materials moving by on a conveyor belt. A special case of line scanning is ''point scanning'' (with a whisk broom scanner), where a point-like aperture is used instead of a slit, and the sensor is essentially one-dimensional instead of 2-D.


Spectral scanning

In spectral scanning, each 2-D sensor output represents a monochromatic ('single-colored'), spatial (''x'', ''y'') map of the scene. HSI devices for spectral scanning are typically based on optical band-pass filters (either tunable or fixed). The scene is spectrally scanned by exchanging one filter after another while the platform remains stationary. In such 'staring', wavelength scanning systems, spectral smearing can occur if there is movement within the scene, invalidating spectral correlation/detection. Nonetheless, there is the advantage of being able to pick and choose spectral bands, and having a direct representation of the two spatial dimensions of the scene. If the imaging system is used on a moving platform, such as an airplane, acquired images at different wavelengths corresponds to different areas of the scene. The spatial features on each of the images may be used to realign the pixels.


Non-scanning

In non-scanning, a single 2-D sensor output contains all spatial (''x'', ''y'') and spectral (''λ'') data. HSI devices for non-scanning yield the full datacube at once, without any scanning. Figuratively speaking, a single snapshot represents a perspective projection of the datacube, from which its three-dimensional structure can be reconstructed. The most prominent benefits of these snapshot hyperspectral imaging systems are the ''snapshot advantage'' (higher light throughput) and shorter acquisition time. A number of systems have been designed, including computed tomographic imaging spectrometry (CTIS), fiber-reformatting imaging spectrometry (FRIS), integral field spectroscopy with lenslet arrays (IFS-L), multi-aperture integral field spectrometer (Hyperpixel Array), integral field spectroscopy with image slicing mirrors (IFS-S), image-replicating imaging spectrometry (IRIS), filter stack spectral decomposition (FSSD), coded aperture snapshot spectral imaging (CASSI), image mapping spectrometry (IMS), and multispectral Sagnac interferometry (MSI). However, computational effort and manufacturing costs are high. In an effort to reduce the computational demands and potentially the high cost of non-scanning hyperspectral instrumentation, prototype devices based on Multivariate Optical Computing have been demonstrated. These devices have been based on the Multivariate Optical Element spectral calculation engine or the
Spatial Light Modulator A spatial light modulator (SLM) is an object that imposes some form of spatially varying modulation on a beam of light. A simple example is an overhead projector transparency. Usually when the term SLM is used, it means that the transparency can ...
spectral calculation engine. In these platforms, chemical information is calculated in the optical domain prior to imaging such that the chemical image relies on conventional camera systems with no further computing. As a disadvantage of these systems, no spectral information is ever acquired, i.e. only the chemical information, such that post processing or reanalysis is not possible.


Spatiospectral scanning

In spatiospectral scanning, each 2-D sensor output represents a wavelength-coded ('rainbow-colored', ''λ'' = ''λ''(''y'')), spatial (''x'', ''y'') map of the scene. A prototype for this technique, introduced in 2014, consists of a camera at some ''non-zero'' distance behind a basic slit spectroscope (slit + dispersive element). Advanced spatiospectral scanning systems can be obtained by placing a dispersive element before a spatial scanning system. Scanning can be achieved by moving the whole system relative to the scene, by moving the camera alone, or by moving the slit alone. Spatiospectral scanning unites some advantages of spatial and spectral scanning, thereby alleviating some of their disadvantages.


Distinguishing hyperspectral from multispectral imaging

Hyperspectral imaging is part of a class of techniques commonly referred to as spectral imaging or spectral analysis. The term “hyperspectral imaging” derives from the development of NASA's Airborne Imaging Spectrometer (AIS) and AVIRIS in the mid-1980s. Although NASA prefers the earlier term “imaging spectroscopy” over “hyperspectral imaging,” use of the latter term has become more prevalent in scientific and non-scientific language. In a peer reviewed letter, experts recommend using the terms “imaging spectroscopy” or “spectral imaging” and avoiding exaggerated
prefix A prefix is an affix which is placed before the Word stem, stem of a word. Adding it to the beginning of one word changes it into another word. For example, when the prefix ''un-'' is added to the word ''happy'', it creates the word ''unhappy'' ...
es such as “hyper-,” “super-” and "ultra-,” to prevent
misnomer A misnomer is a name that is incorrectly or unsuitably applied. Misnomers often arise because something was named long before its correct nature was known, or because an earlier form of something has been replaced by a later form to which the name ...
s in discussion. Hyperspectral imaging is related to multispectral imaging. The distinction between hyper- and multi-band is sometimes based incorrectly on an arbitrary "number of bands" or on the type of measurement. Hyperspectral imaging (HSI) uses continuous and contiguous ranges of wavelengths (e.g. 400 - 1100 nm in steps of 1 nm) whilst multiband imaging (MSI) uses a subset of targeted wavelengths at chosen locations (e.g. 400 - 1100 nm in steps of 20 nm). Multiband imaging deals with several images at discrete and somewhat narrow bands. Being "discrete and somewhat narrow" is what distinguishes multispectral imaging in the visible wavelength from
color photography Color photography is photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of ...
. A multispectral sensor may have many bands covering the spectrum from the visible to the longwave infrared. Multispectral images do not produce the "spectrum" of an object. Landsat is an excellent example of multispectral imaging. Hyperspectral deals with imaging narrow spectral bands over a continuous spectral range, producing the spectra of all pixels in the scene. A sensor with only 20 bands can also be hyperspectral when it covers the range from 500 to 700 nm with 20 bands each 10 nm wide. (While a sensor with 20 discrete bands covering the visible, near, short wave, medium wave and long wave infrared would be considered multispectral.) ''Ultraspectral'' could be reserved for
interferometer Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber op ...
type imaging sensors with a very fine spectral resolution. These sensors often have (but not necessarily) a low spatial resolution of several pixels only, a restriction imposed by the high data rate.


Applications

Hyperspectral remote sensing is used in a wide array of applications. Although originally developed for mining and geology (the ability of hyperspectral imaging to identify various minerals makes it ideal for the mining and oil industries, where it can be used to look for ore and oil),Smith, R.B. (July 14, 2006),
Introduction to hyperspectral imaging with TMIPS
'', MicroImages Tutorial Web site
it has now spread into fields as widespread as ecology and surveillance, as well as historical manuscript research, such as the imaging of the
Archimedes Palimpsest The Archimedes Palimpsest is a parchment codex palimpsest, originally a Byzantine Greek copy of a compilation of Archimedes and other authors. It contains two works of Archimedes that were thought to have been lost (the ''Ostomachion'' and the ' ...
. This technology is continually becoming more available to the public. Organizations such as NASA and the USGS have catalogues of various minerals and their spectral signatures, and have posted them online to make them readily available for researchers. On a smaller scale, NIR hyperspectral imaging can be used to rapidly monitor the application of pesticides to individual seeds for quality control of the optimum dose and homogeneous coverage.


Agriculture

Although the cost of acquiring hyperspectral images is typically high, for specific crops and in specific climates, hyperspectral remote sensing use is increasing for monitoring the development and health of crops. In
Australia Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
, work is under way to use imaging spectrometers to detect grape variety and develop an early warning system for disease outbreaks. Furthermore, work is underway to use hyperspectral data to detect the chemical composition of plants,Ferwerda, J.G. (2005),
Charting the quality of forage: measuring and mapping the variation of chemical components in foliage with hyperspectral remote sensing
', Wageningen University, ITC Dissertation 126, 166p.
which can be used to detect the nutrient and water status of wheat in irrigated systems.Tilling, A.K., et al., (2006)
Remote sensing to detect nitrogen and water stress in wheat
', The Australian Society of Agronomy
On a smaller scale, NIR hyperspectral imaging can be used to rapidly monitor the application of pesticides to individual seeds for quality control of the optimum dose and homogeneous coverage. Another application in agriculture is the detection of animal proteins in compound feeds to avoid bovine spongiform encephalopathy (BSE), also known as mad-cow disease. Different studies have been done to propose alternative tools to the reference method of detection, (classical
microscopy Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of micr ...
). One of the first alternatives is near
infrared microscopy Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of micr ...
(NIR), which combines the advantages of microscopy and NIR. In 2004, the first study relating this problem with hyperspectral imaging was published.Fernández Pierna, J.A., et al., 'Combination of Support Vector Machines (SVM) and Near Infrared (NIR) imaging spectroscopy for the detection of meat and bone meat (MBM) in compound feeds' Journal of Chemometrics 18 (2004) 341-349 Hyperspectral libraries that are representative of the diversity of ingredients usually present in the preparation of compound feeds were constructed. These libraries can be used together with chemometric tools to investigate the limit of detection, specificity and reproducibility of the NIR hyperspectral imaging method for the detection and quantification of animal ingredients in feed. HSI cameras can also be used to detect stress from heavy metals in plants and become an earlier and faster alternative to post-harvest wet chemical methods.


Waste sorting and recycling

Hyperspectral imaging can provide information about the chemical constituents of materials which makes it useful for waste sorting and recycling. It has been applied to distinguish between substances with different fabrics and to identify natural, animal and synthetic fibers. HSI cameras can be integrated with machine vision systems and, via simplifying platforms, allow end-customers to create new waste sorting applications and other sorting/identification applications. A system of machine learning and hyperspectral camera can distinguish between 12 different types of plastics such as PET and PP for automated separation of waste of, as of 2020, highly unstandardized plastics products and
packaging Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a co ...
.


Eye care

Researchers at the Université de Montréal are working with
Photon etc. Photon etc. is a Canadian manufacturer of infrared cameras, widely tunable optical filters, hyperspectral imaging and spectroscopic scientific instruments for academic and industrial applications. Its main technology is based on volume Bragg gra ...
and Optina Diagnostics to test the use of hyperspectral photography in the diagnosis of retinopathy and macular edema before damage to the eye occurs. The metabolic hyperspectral camera will detect a drop in oxygen consumption in the retina, which indicates potential disease. An
ophthalmologist Ophthalmology ( ) is a surgery, surgical subspecialty within medicine that deals with the diagnosis and treatment of eye disorders. An ophthalmologist is a physician who undergoes subspecialty training in medical and surgical eye care. Followin ...
will then be able to treat the retina with injections to prevent any potential damage.


Food processing

In the
food processing Food processing is the transformation of agricultural products into food, or of one form of food into other forms. Food processing includes many forms of processing foods, from grinding grain to make raw flour to home cooking to complex industr ...
industry, hyperspectral imaging, combined with intelligent software, enables digital sorters (also called optical sorters) to identify and remove defects and foreign material (FM) that are invisible to traditional camera and laser sorters. By improving the accuracy of defect and FM removal, the food processor’s objective is to enhance product quality and increase yields. Adopting hyperspectral imaging on digital sorters achieves non-destructive, 100 percent inspection in-line at full production volumes. The sorter’s software compares the hyperspectral images collected to user-defined accept/reject thresholds, and the ejection system automatically removes defects and foreign material. The recent commercial adoption of hyperspectral sensor-based food sorters is most advanced in the nut industry where installed systems maximize the removal of stones, shells and other foreign material (FM) and extraneous vegetable matter (EVM) from walnuts, pecans, almonds, pistachios, peanuts and other nuts. Here, improved product quality, low false reject rates and the ability to handle high incoming defect loads often justify the cost of the technology. Commercial adoption of hyperspectral sorters is also advancing at a fast pace in the potato processing industry where the technology promises to solve a number of outstanding product quality problems. Work is underway to use hyperspectral imaging to detect “sugar ends,” “hollow heart” and “common scab,” conditions that plague potato processors.


Mineralogy

Geological samples, such as drill cores, can be rapidly mapped for nearly all minerals of commercial interest with hyperspectral imaging. Fusion of SWIR and LWIR spectral imaging is standard for the detection of minerals in the feldspar, silica,
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
, garnet, and olivine groups, as these minerals have their most distinctive and strongest spectral signature in the LWIR regions.Holma, H., (May 2011)
Thermische Hyperspektralbildgebung im langwelligen Infrarot
, Photonik
Hyperspectral remote sensing of minerals is well developed. Many minerals can be identified from airborne images, and their relation to the presence of valuable minerals, such as gold and diamonds, is well understood. Currently, progress is towards understanding the relationship between oil and gas leakages from pipelines and natural wells, and their effects on the vegetation and the spectral signatures. Recent work includes the PhD dissertations of Werff and Noomen.


Surveillance

Hyperspectral surveillance is the implementation of hyperspectral scanning technology for
surveillance Surveillance is the monitoring of behavior, many activities, or information for the purpose of information gathering, influencing, managing or directing. This can include observation from a distance by means of electronic equipment, such as c ...
purposes. Hyperspectral imaging is particularly useful in military surveillance because of countermeasures that military entities now take to avoid airborne surveillance. The idea that drives hyperspectral surveillance is that hyperspectral scanning draws information from such a large portion of the light spectrum that any given object should have a unique spectral signature in at least a few of the many bands that are scanned. The
SEALs Seals may refer to: * Pinniped, a diverse group of semi-aquatic marine mammals, many of which are commonly called seals, particularly: ** Earless seal, or "true seal" ** Fur seal * Seal (emblem), a device to impress an emblem, used as a means of a ...
from
NSWDG The Naval Special Warfare Development Group (NSWDG), abbreviated as DEVGRU ("Development Group") and commonly known as SEAL Team Six, is the United States Navy component of the Joint Special Operations Command (JSOC). The unit is often referre ...
who killed
Osama bin Laden Osama bin Mohammed bin Awad bin Laden (10 March 1957 – 2 May 2011) was a Saudi-born extremist militant who founded al-Qaeda and served as its leader from 1988 until Killing of Osama bin Laden, his death in 2011. Ideologically a Pan-Islamism ...
in May 2011 used this technology while conducting the raid (Operation Neptune's Spear) on Osama bin Laden's compound in Abbottabad, Pakistan. Hyperspectral imaging has also shown potential to be used in
facial recognition Facial recognition or face recognition may refer to: * Face detection, often a step done before facial recognition * Face perception, the process by which the human brain understands and interprets the face * Pareidolia, which involves, in part, se ...
purposes. Facial recognition algorithms using hyperspectral imaging have been shown to perform better than algorithms using traditional imaging. Traditionally, commercially available thermal infrared hyperspectral imaging systems have needed
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wide ...
or helium cooling, which has made them impractical for most surveillance applications. In 2010,
Specim Specim, Spectral Imaging Ltd is a European technology firm headquartered in Oulu, Finland. Specim manufactures and sells imaging spectrographs, hyperspectral cameras and systems. Specim's airborne AISA hyperspectral cameras have been utilized fo ...
introduced a thermal infrared hyperspectral camera that can be used for outdoor surveillance and UAV applications without an external light source such as the sun or the moon.Frost & Sullivan (Feb 2011). Technical Insights, Aerospace & Defence
World First Thermal Hyperspectral Camera for Unmanned Aerial Vehicles.
/ref>Specim's Owl sees an invisible object and identifies its materials even in a pitch-dark night.
.


Astronomy

In astronomy, hyperspectral imaging is used to determine a spatially-resolved spectral image. Since a spectrum is an important diagnostic, having a spectrum for each pixel allows more science cases to be addressed. In astronomy, this technique is commonly referred to as
integral field spectroscopy Integral Field Spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains -from 0.32 μm to 24 μm- to get from a single exposure spatially resolved spectra in a bi-dimensional region. Develop ...
, and examples of this technique include FLAMES and SINFONI on the Very Large Telescope, but also the Advanced CCD Imaging Spectrometer on Chandra X-ray Observatory uses this technique.


Chemical imaging

Soldiers can be exposed to a wide variety of chemical hazards. These threats are mostly invisible but detectable by hyperspectral imaging technology. The Telops Hyper-Cam, introduced in 2005, has demonstrated this at distances up to 5 km.


Environment

Most countries require continuous monitoring of emissions produced by coal and oil-fired power plants, municipal and hazardous waste incinerators, cement plants, as well as many other types of industrial sources. This monitoring is usually performed using extractive sampling systems coupled with infrared spectroscopy techniques. Some recent standoff measurements performed allowed the evaluation of the air quality but not many remote independent methods allow for low uncertainty measurements.


Civil engineering

Recent research indicates that hyperspectral imaging may be useful to detect the development of cracks in pavements which are hard to detect from images taken with visible spectrum cameras.


Biomedical imaging

Hyperspectral imaging has also been used to detect cancer, identify nerves and analyze bruises.


Data compression

In February 2019, an organization founded by the world's major space industries, the Consultative Committee for Space Data Standards
CCSDS
, approved a standard for both lossless and near-lossless compression of multispectral and hyperspectral images
CCSDS 123
. Based on NASA's fast-lossless algorithm, it requires very low memory and computational resources compared to alternatives, such as
JPEG 2000 JPEG 2000 (JP2) is an image compression standard and coding system. It was developed from 1997 to 2000 by a Joint Photographic Experts Group committee chaired by Touradj Ebrahimi (later the JPEG president), with the intention of superseding the ...
. Commercial implementations of CCSDS 123 include: * The
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (1205 ...
'
SHyLoC
IP core, for lossless compression of up to 1 Gpbs.
Metaspectral
for both lossless and near-lossless compression, achieving throughputs of over 30 Gbps.


Advantages and disadvantages

The primary advantage to hyperspectral imaging is that, because an entire spectrum is acquired at each point, the operator needs no prior knowledge of the sample, and postprocessing allows all available information from the dataset to be mined. Hyperspectral imaging can also take advantage of the spatial relationships among the different spectra in a neighbourhood, allowing more elaborate spectral-spatial models for a more accurate segmentation and classification of the image.A. Picon, O. Ghita, P.F. Whelan, P. Iriondo (2009),
Spectral and Spatial Feature Integration for Classification of Non-ferrous Materials in Hyper-spectral Data
', IEEE Transactions on Industrial Informatics, Vol. 5, N° 4, November 2009.
The primary disadvantages are cost and complexity. Fast computers, sensitive detectors, and large data storage capacities are needed for analyzing hyperspectral data. Significant data storage capacity is necessary since uncompressed hyperspectral cubes are large, multidimensional datasets, potentially exceeding hundreds of megabytes. All of these factors greatly increase the cost of acquiring and processing hyperspectral data. Also, one of the hurdles researchers have had to face is finding ways to program hyperspectral satellites to sort through data on their own and transmit only the most important images, as both transmission and storage of that much data could prove difficult and costly. As a relatively new analytical technique, the full potential of hyperspectral imaging has not yet been realized.


See also

* Acousto-optic tunable filter * Airborne real-time cueing hyperspectral enhanced reconnaissance * Cathodoluminescence *
Full spectral imaging Full spectral imaging (FSI) is a form of imaging spectroscopy and is the successor to hyperspectral imaging. Full spectral imaging was developed to improve the capabilities of remote sensing including Earth remote sensing. Data acquisition Wher ...
*
HyMap HyMap is an airborne hyperspectral imaging sensor that was developed in Australia and is manufactured by Integrated Spectronics. HyMap data has 126 spectral bands spanning the wavelength interval 0.45–2.5 μm, and 5 metres spatial resolution. It i ...
, a widely used hyperspectral imaging sensor * Liquid crystal tunable filter * Metamerism (color), the perceptual equivalence that hyperspectral imaging overcomes * Multispectral image * Sensor fusion *
Video spectroscopy Video spectroscopy combines spectroscopic measurements with video technique. This technology has resulted from recent developments in hyperspectral imaging. A video capable imaging spectrometer can work like a camcorder and provide full frame spectr ...


References


External links


ASTER Spectral Library (compilation of over 2400 spectra of natural and man made materials)Sample Hyperspectral (AVIRIS) images
from
JPL The Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, United States. Founded in the 1930s by Caltech researchers, JPL is owned by NASA an ...
{{Branches of Spectroscopy Satellite meteorology Materials science Imaging Remote sensing Infrared imaging Surveillance Spectroscopy Infrared spectroscopy Military electronics Satellite imaging sensors