HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and
infinitesimal In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
numbers. A hyperreal number x is said to be finite if, and only if, , x, for some integer n. Similarly, x is said to be infinitesimal if, and only if, , x, <1/n for all positive integers n. The term "hyper-real" was introduced by
Edwin Hewitt Edwin Hewitt (January 20, 1920, Everett, Washington – June 21, 1999) was an American mathematician known for his work in abstract harmonic analysis and for his discovery, in collaboration with Leonard Jimmie Savage, of the Hewitt–Savage z ...
in 1948. The hyperreal numbers satisfy the
transfer principle In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the firs ...
, a rigorous version of Leibniz's heuristic
law of continuity Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior, with its precise definition a matter of longstanding debate. It has been variously described as a science and as the ar ...
. The transfer principle states that true first-order statements about R are also valid in *R. For example, the
commutative law In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
of addition, , holds for the hyperreals just as it does for the reals; since R is a
real closed field In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Def ...
, so is *R. Since \sin()=0 for all
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s ''n'', one also has \sin()=0 for all
hyperinteger In nonstandard analysis, a hyperinteger ''n'' is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is g ...
s H. The transfer principle for
ultrapower The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All fact ...
s is a consequence of
Łoś's theorem The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof t ...
of 1955. Concerns about the
soundness In logic and deductive reasoning, an argument is sound if it is both Validity (logic), valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a Formal system, formal system of logic is sound if and o ...
of arguments involving infinitesimals date back to ancient Greek mathematics, with
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
replacing such proofs with ones using other techniques such as the
method of exhaustion The method of exhaustion () is a method of finding the area of a shape by inscribing inside it a sequence of polygons (one at a time) whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the differ ...
. In the 1960s,
Abraham Robinson Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincorp ...
proved that the hyperreals were logically consistent if and only if the reals were. This put to rest the fear that any proof involving infinitesimals might be unsound, provided that they were manipulated according to the logical rules that Robinson delineated. The application of hyperreal numbers and in particular the transfer principle to problems of
analysis Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
is called
nonstandard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
. One immediate application is the definition of the basic concepts of analysis such as the
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
and
integral In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
in a direct fashion, without passing via logical complications of multiple quantifiers. Thus, the derivative of ''f''(''x'') becomes f'(x) = \operatorname\left( \frac \right) for an infinitesimal \Delta x, where st(⋅) denotes the
standard part function In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every suc ...
, which "rounds off" each finite hyperreal to the nearest real. Similarly, the integral is defined as the standard part of a suitable
infinite sum In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
.


Transfer principle

The idea of the hyperreal system is to extend the real numbers R to form a system *R that includes infinitesimal and infinite numbers, but without changing any of the elementary axioms of algebra. Any statement of the form "for any number x ..." that is true for the reals is also true for the hyperreals. For example, the axiom that states "for any number ''x'', ''x'' + 0 = ''x''" still applies. The same is true for quantification over several numbers, e.g., "for any numbers ''x'' and ''y'', ''xy'' = ''yx''." This ability to carry over statements from the reals to the hyperreals is called the
transfer principle In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the firs ...
. However, statements of the form "for any ''set'' of numbers ''S'' ..." may not carry over. The only properties that differ between the reals and the hyperreals are those that rely on quantification over sets, or other higher-level structures such as functions and relations, which are typically constructed out of sets. Each real set, function, and relation has its natural hyperreal extension, satisfying the same first-order properties. The kinds of logical sentences that obey this restriction on quantification are referred to as statements in
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
. The transfer principle, however, does not mean that R and *R have identical behavior. For instance, in *R there exists an element ''ω'' such that : 1<\omega, \quad 1+1<\omega, \quad 1+1+1<\omega, \quad 1+1+1+1<\omega, \ldots. but there is no such number in R. (In other words, *R is not Archimedean.) This is possible because the nonexistence of ''ω'' cannot be expressed as a first-order statement.


Use in analysis

Informal notations for non-real quantities have historically appeared in calculus in two contexts: as infinitesimals, like ''dx'', and as the symbol ∞, used, for example, in limits of integration of improper integrals. As an example of the transfer principle, the statement that for any nonzero number ''x'', ''2x'' ≠ ''x'', is true for the real numbers, and it is in the form required by the transfer principle, so it is also true for the hyperreal numbers. This shows that it is not possible to use a generic symbol such as ∞ for all the infinite quantities in the hyperreal system; infinite quantities differ in magnitude from other infinite quantities, and infinitesimals from other infinitesimals. Similarly, the casual use of 1/0 = ∞ is invalid, since the transfer principle applies to the statement that zero has no multiplicative inverse. The rigorous counterpart of such a calculation would be that if ε is a non-zero infinitesimal, then 1/ε is infinite. For any finite hyperreal number ''x'', the standard part, st(''x''), is defined as the unique closest real number to ''x''; it necessarily differs from ''x'' only infinitesimally. The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(''x'') to be the
extended real number In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential ...
+\infty, and likewise, if x is a negative infinite hyperreal number, set st(''x'') to be -\infty (the idea is that an infinite hyperreal number should be smaller than the "true" absolute infinity but closer to it than any real number is).


Differentiation

One of the key uses of the hyperreal number system is to give a precise meaning to the differential operator ''d'' as used by Leibniz to define the derivative and the integral. For any real-valued function f, the differential df is defined as a map which sends every ordered pair (x,dx) (where x is real and dx is nonzero infinitesimal) to an infinitesimal : df(x,dx) := \operatorname\left(\frac\right) \ dx. Note that the very notation "dx" used to denote any infinitesimal is consistent with the above definition of the operator d, for if one interprets x (as is commonly done) to be the function f(x)=x, then for every (x,dx) the differential d(x) will equal the infinitesimal dx. A real-valued function f is said to be differentiable at a point x if the quotient : \frac=\operatorname\left(\frac\right) is the same for all nonzero infinitesimals dx. If so, this quotient is called the derivative of f at x. For example, to find the
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
of the function f(x)=x^2, let dx be a non-zero infinitesimal. Then, : The use of the standard part in the definition of the derivative is a rigorous alternative to the traditional practice of neglecting the square of an infinitesimal quantity.
Dual number In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. They are expressions of the form , where and are real numbers, and is a symbol taken to satisfy \varepsilon^2 = 0 with \varepsilon\neq 0. D ...
s are a number system based on this idea. After the third line of the differentiation above, the typical method from Newton through the 19th century would have been simply to discard the ''dx''2 term. In the hyperreal system, ''dx''2 ≠ 0, since ''dx'' is nonzero, and the transfer principle can be applied to the statement that the square of any nonzero number is nonzero. However, the quantity ''dx''2 is infinitesimally small compared to ''dx''; that is, the hyperreal system contains a hierarchy of infinitesimal quantities. Using hyperreal numbers for differentiation allows for a more algebraically manipulable approach to derivatives. In standard differentiation, partial differentials and higher-order differentials are not independently manipulable through algebraic techniques. However, using the hyperreals, a system can be established for doing so, though resulting in a slightly different notation.


Integration

Another key use of the hyperreal number system is to give a precise meaning to the integral sign ∫ used by Leibniz to define the definite integral. For any infinitesimal function \ \varepsilon(x), \ one may define the integral \int(\varepsilon) \ as a map sending any ordered triple (a,b,dx) (where \ a \ and \ b \ are real, and \ dx \ is infinitesimal of the same sign as \, b-a) to the value : \int_a^b(\varepsilon,dx):=\operatorname\left(\sum_^N\varepsilon(a+n \ dx)\right), where \ N \ is any
hyperinteger In nonstandard analysis, a hyperinteger ''n'' is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is g ...
number satisfying \ \operatorname(N \ dx) = b-a. A real-valued function f is then said to be integrable over a closed interval \ ,b\ if for any nonzero infinitesimal \ dx, \ the integral : \int_a^b(f \ dx,dx) is independent of the choice of \ dx. If so, this integral is called the definite integral (or antiderivative) of f on \ ,b This shows that using hyperreal numbers, Leibniz's notation for the definite integral can actually be interpreted as a meaningful algebraic expression (just as the derivative can be interpreted as a meaningful quotient).


Properties

The hyperreals *R form an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
containing the reals R as a subfield. Unlike the reals, the hyperreals do not form a standard
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
, but by virtue of their order they carry an
order topology In mathematics, an order topology is a specific topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, ...
. The use of the definite article ''the'' in the phrase ''the hyperreal numbers'' is somewhat misleading in that there is not a unique ordered field that is referred to in most treatments. However, a 2003 paper by Vladimir Kanovei and
Saharon Shelah Saharon Shelah (; , ; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, 1945. He is th ...
shows that there is a definable, countably saturated (meaning
ω-saturated In mathematical logic, and particularly in its subfield model theory, a saturated model ''M'' is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is \al ...
but not
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
)
elementary extension In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one oft ...
of the reals, which therefore has a good claim to the title of ''the'' hyperreal numbers. Furthermore, the field obtained by the ultrapower construction from the space of all real sequences, is unique up to isomorphism if one assumes the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
. The condition of being a hyperreal field is a stronger one than that of being a
real closed field In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Def ...
strictly containing R. It is also stronger than that of being a superreal field in the sense of Dales and Woodin.


Development

The hyperreals can be developed either axiomatically or by more constructively oriented methods. The essence of the axiomatic approach is to assert (1) the existence of at least one infinitesimal number, and (2) the validity of the transfer principle. In the following subsection we give a detailed outline of a more constructive approach. This method allows one to construct the hyperreals if given a set-theoretic object called an
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
, but the ultrafilter itself cannot be explicitly constructed.


From Leibniz to Robinson

When Newton and (more explicitly)
Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many ...
introduced differentials, they used infinitesimals and these were still regarded as useful by later mathematicians such as
Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
and
Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
. Nonetheless these concepts were from the beginning seen as suspect, notably by
George Berkeley George Berkeley ( ; 12 March 168514 January 1753), known as Bishop Berkeley (Bishop of Cloyne of the Anglican Church of Ireland), was an Anglo-Irish philosopher, writer, and clergyman who is regarded as the founder of "immaterialism", a philos ...
. Berkeley's criticism centered on a perceived shift in hypothesis in the definition of the derivative in terms of infinitesimals (or fluxions), where ''dx'' is assumed to be nonzero at the beginning of the calculation, and to vanish at its conclusion (see
Ghosts of departed quantities ''The Analyst'' (subtitled ''A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious ...
for details). When in the 1800s
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
was put on a firm footing through the development of the
(ε, δ)-definition of limit Although the function is not defined at zero, as becomes closer and closer to zero, becomes arbitrarily close to 1. In other words, the limit of as approaches zero, equals 1. In mathematics, the limit of a function is a fundame ...
by
Bolzano Bolzano ( ; ; or ) is the capital city of South Tyrol (officially the province of Bolzano), Northern Italy. With a population of 108,245, Bolzano is also by far the largest city in South Tyrol and the third largest in historical Tyrol. The ...
, Cauchy,
Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the " father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school t ...
, and others, infinitesimals were largely abandoned, though research in non-Archimedean fields continued (Ehrlich 2006). However, in the 1960s
Abraham Robinson Abraham Robinson (born Robinsohn; October 6, 1918 – April 11, 1974) was a mathematician who is most widely known for development of nonstandard analysis, a mathematically rigorous system whereby infinitesimal and infinite numbers were reincorp ...
showed how infinitely large and infinitesimal numbers can be rigorously defined and used to develop the field of
nonstandard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
.. The classic introduction to nonstandard analysis. Robinson developed his theory nonconstructively, using
model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
; however it is possible to proceed using only
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
and
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, and proving the transfer principle as a consequence of the definitions. In other words hyperreal numbers ''per se'', aside from their use in nonstandard analysis, have no necessary relationship to model theory or first order logic, although they were discovered by the application of model theoretic techniques from logic. Hyper-real fields were in fact originally introduced by Hewitt (1948) by purely algebraic techniques, using an ultrapower construction.


Ultrapower construction

We are going to construct a hyperreal field via
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
s of reals. In fact we can add and multiply sequences componentwise; for example: : (a_0, a_1, a_2, \ldots) + (b_0, b_1, b_2, \ldots) = (a_0 +b_0, a_1+b_1, a_2+b_2, \ldots) and analogously for multiplication. This turns the set of such sequences into a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
, which is in fact a real
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
A. We have a natural embedding of R in A by identifying the real number ''r'' with the sequence (''r'', ''r'', ''r'', …) and this identification preserves the corresponding algebraic operations of the reals. The intuitive motivation is, for example, to represent an infinitesimal number using a sequence that approaches zero. The inverse of such a sequence would represent an infinite number. As we will see below, the difficulties arise because of the need to define rules for comparing such sequences in a manner that, although inevitably somewhat arbitrary, must be self-consistent and well defined. For example, we may have two sequences that differ in their first ''n'' members, but are equal after that; such sequences should clearly be considered as representing the same hyperreal number. Similarly, most sequences
oscillate Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulu ...
randomly forever, and we must find some way of taking such a sequence and interpreting it as, say, 7+\epsilon, where \epsilon is a certain infinitesimal number. Comparing sequences is thus a delicate matter. We could, for example, try to define a relation between sequences in a componentwise fashion: : (a_0, a_1, a_2, \ldots) \leq (b_0, b_1, b_2, \ldots) \iff (a_0 \leq b_0) \wedge (a_1 \leq b_1) \wedge (a_2 \leq b_2) \ldots but here we run into trouble, since some entries of the first sequence may be bigger than the corresponding entries of the second sequence, and some others may be smaller. It follows that the relation defined in this way is only a
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
. To get around this, we have to specify which positions matter. Since there are infinitely many indices, we don't want finite sets of indices to matter. A consistent choice of index sets that matter is given by any free
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
''U'' on the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s; these can be characterized as ultrafilters that do not contain any finite sets. (The good news is that
Zorn's lemma Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...
guarantees the existence of many such ''U''; the bad news is that they cannot be explicitly constructed.) We think of ''U'' as singling out those sets of indices that "matter": We write (''a''0, ''a''1, ''a''2, ...) ≤ (''b''0, ''b''1, ''b''2, ...) if and only if the set of natural numbers is in ''U''. This is a total preorder and it turns into a
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
if we agree not to distinguish between two sequences ''a'' and ''b'' if ''a'' ≤ ''b'' and ''b'' ≤ ''a''. With this identification, the ordered field *R of hyperreals is constructed. From an algebraic point of view, ''U'' allows us to define a corresponding
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
I in the commutative ring A (namely, the set of the sequences that vanish in some element of ''U''), and then to define *R as A/I; as the
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
of a commutative ring by a maximal ideal, *R is a field. This is also notated A/''U'', directly in terms of the free ultrafilter ''U''; the two are equivalent. The maximality of I follows from the possibility of, given a sequence ''a'', constructing a sequence ''b'' inverting the non-null elements of ''a'' and not altering its null entries. If the set on which ''a'' vanishes is not in ''U'', the product ''ab'' is identified with the number 1, and any ideal containing 1 must be ''A''. In the resulting field, these ''a'' and ''b'' are inverses. The field A/''U'' is an
ultrapower The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All fact ...
of R. Since this field contains R it has
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
at least that of the continuum. Since A has cardinality : (2^)^ = 2^ =2^, it is also no larger than 2^, and hence has the same cardinality as R. One question we might ask is whether, if we had chosen a different free ultrafilter ''V'', the quotient field A/''U'' would be isomorphic as an ordered field to A/''V''. This question turns out to be equivalent to the
continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
; in ZFC with the continuum hypothesis we can prove this field is unique up to
order isomorphism In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be co ...
, and in ZFC with the negation of continuum hypothesis we can prove that there are non-order-isomorphic pairs of fields that are both countably indexed ultrapowers of the reals. For more information about this method of construction, see
ultraproduct The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All fact ...
.


An intuitive approach to the ultrapower construction

The following is an intuitive way of understanding the hyperreal numbers. The approach taken here is very close to the one in the book by Goldblatt. Recall that the sequences converging to zero are sometimes called infinitely small. These are almost the infinitesimals in a sense; the true infinitesimals include certain classes of sequences that contain a sequence converging to zero. Let us see where these classes come from. Consider first the sequences of real numbers. They form a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, that is, one can multiply, add and subtract them, but not necessarily divide by a non-zero element. The real numbers are considered as the constant sequences, the sequence is zero if it is identically zero, that is, ''a''''n'' = 0 for all ''n''. In our ring of sequences one can get ''ab'' = 0 with neither ''a'' = 0 nor ''b'' = 0. Thus, if for two sequences a, b one has ''ab'' = 0, at least one of them should be declared zero. Surprisingly enough, there is a consistent way to do it. As a result, the equivalence classes of sequences that differ by some sequence declared zero will form a field, which is called a hyperreal field. It will contain the infinitesimals in addition to the ordinary real numbers, as well as infinitely large numbers (the reciprocals of infinitesimals, including those represented by sequences diverging to infinity). Also every hyperreal that is not infinitely large will be infinitely close to an ordinary real, in other words, it will be the sum of an ordinary real and an infinitesimal. This construction is parallel to the construction of the reals from the rationals given by
Cantor A cantor or chanter is a person who leads people in singing or sometimes in prayer. Cantor as a profession generally refers to those leading a Jewish congregation, although it also applies to the lead singer or choir director in Christian contexts. ...
. He started with the ring of the
Cauchy sequence In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
s of rationals and declared all the sequences that converge to zero to be zero. The result is the reals. To continue the construction of hyperreals, consider the zero sets of our sequences, that is, the z(a)=\, that is, z(a) is the set of indexes i for which a_i=0. It is clear that if ab=0, then the union of z(a) and z(b) is N (the set of all natural numbers), so: # One of the sequences that vanish on two complementary sets should be declared zero. # If a is declared zero, ab should be declared zero too, no matter what b is. # If both a and b are declared zero, then a+b should also be declared zero. Now the idea is to single out a bunch ''U'' of
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s ''X'' of N and to declare that a=0 if and only if z(a) belongs to ''U''. From the above conditions one can see that: # From two complementary sets one belongs to ''U''. # Any set having a subset that belongs to ''U'', also belongs to ''U''. # An intersection of any two sets belonging to ''U'' belongs to ''U''. # Finally, we do not want the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
to belong to ''U'' because then everything would belong to ''U'', as every set has the empty set as a subset. Any family of sets that satisfies (2–4) is called a filter (an example: the complements to the finite sets, it is called the
Fréchet filter In mathematics, the Fréchet filter, also called the cofinite filter, on a set X is a certain collection of subsets of X (that is, it is a particular subset of the power set of X). A subset F of X belongs to the Fréchet filter if and only if the c ...
and it is used in the usual limit theory). If (1) also holds, U is called an
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
(because you can add no more sets to it without breaking it). The only explicitly known example of an ultrafilter is the family of sets containing a given element (in our case, say, the number 10). Such ultrafilters are called trivial, and if we use it in our construction, we come back to the ordinary real numbers. Any ultrafilter containing a finite set is trivial. It is known that any filter can be extended to an ultrafilter, but the proof uses the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. The existence of a nontrivial ultrafilter (the
ultrafilter lemma In the mathematical field of set theory, an ultrafilter on a set X is a ''maximal filter'' on the set X. In other words, it is a collection of subsets of X that satisfies the definition of a filter on X and that is maximal with respect to incl ...
) can be added as an extra axiom, as it is weaker than the axiom of choice. Now if we take a nontrivial ultrafilter (which is an extension of the Fréchet filter) and do our construction, we get the hyperreal numbers as a result. If f is a real function of a real variable x then f naturally extends to a hyperreal function of a hyperreal variable by composition: : f(\)=\ where \ means "the equivalence class of the sequence \dots relative to our ultrafilter", two sequences being in the same class if and only if the zero set of their difference belongs to our ultrafilter. All the arithmetical expressions and formulas make sense for hyperreals and hold true if they are true for the ordinary reals. It turns out that any finite (that is, such that , x, < a for some ordinary real a) hyperreal x will be of the form y+d where y is an ordinary (called standard) real and d is an infinitesimal. It can be proven by bisection method used in proving the Bolzano-Weierstrass theorem, the property (1) of ultrafilters turns out to be crucial.


Properties of infinitesimal and infinite numbers

The finite elements F of *R form a
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
, and in fact a
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every non-zero element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ' ...
, with the unique maximal ideal S being the infinitesimals; the quotient F/S is isomorphic to the reals. Hence we have a homomorphic mapping, st(''x''), from F to R whose kernel consists of the infinitesimals and which sends every element ''x'' of F to a unique real number whose difference from x is in S; which is to say, is infinitesimal. Put another way, every ''finite'' nonstandard real number is "very close" to a unique real number, in the sense that if ''x'' is a finite nonstandard real, then there exists one and only one real number st(''x'') such that ''x'' – st(''x'') is infinitesimal. This number st(''x'') is called the standard part of ''x'', conceptually the same as ''x'' ''to the nearest real number''. This operation is an order-preserving homomorphism and hence is well-behaved both algebraically and order theoretically. It is order-preserving though not isotonic; i.e. x \le y implies \operatorname(x) \le \operatorname(y), but x < y does not imply \operatorname(x) < \operatorname(y). * We have, if both ''x'' and ''y'' are finite, \operatorname(x + y) = \operatorname(x) + \operatorname(y) \operatorname(x y) = \operatorname(x) \operatorname(y) * If ''x'' is finite and not infinitesimal. \operatorname(1/x) = 1 / \operatorname(x) * ''x'' is real if and only if \operatorname(x) = x The map st is continuous with respect to the order topology on the finite hyperreals; in fact it is locally constant.


Hyperreal fields

Suppose ''X'' is a
Tychonoff space In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a ...
, also called a T3.5 space, and C(''X'') is the algebra of continuous real-valued functions on ''X''. Suppose ''M'' is a
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals ...
in C(''X''). Then the factor algebra ''A'' = C(''X'')/''M'' is a totally ordered field ''F'' containing the reals. If ''F'' strictly contains R then ''M'' is called a hyperreal ideal (terminology due to Hewitt (1948)) and ''F'' a hyperreal field. Note that no assumption is being made that the cardinality of ''F'' is greater than R; it can in fact have the same cardinality. An important special case is where the topology on ''X'' is the
discrete topology In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
; in this case ''X'' can be identified with a
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
κ and C(''X'') with the real algebra Rκ of functions from κ to R. The hyperreal fields we obtain in this case are called
ultrapower The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All fact ...
s of R and are identical to the ultrapowers constructed via free
ultrafilter In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P th ...
s in model theory.


See also

* * * * * * * – Surreal numbers are a much larger class of numbers, that contains the hyperreals as well as other classes of non-real numbers.


References


Further reading

* * Hatcher, William S. (1982) "Calculus is Algebra",
American Mathematical Monthly ''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an exposi ...
89: 362–370. * Hewitt, Edwin (1948
Rings of real-valued continuous functions
I. Trans. Amer. Math. Soc. 64, 45—99. * *Keisler, H. Jerome (1994) The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, 207—237, Synthese Lib., 242, Kluwer Acad. Publ., Dordrecht. *


External links

* Crowell,
Brief Calculus
'. A text using infinitesimals. * Hermoso,

'. A gentle introduction. * Keisler,

'. Includes an axiomatic treatment of the hyperreals, and is freely available under a Creative Commons license {{DEFAULTSORT:Hyperreal Number Mathematical analysis Nonstandard analysis Field (mathematics) Real closed field Infinity Mathematics of infinitesimals Numbers