Hypercycle (chemistry)
   HOME

TheInfoList



OR:

In
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, a hypercycle is an abstract model of organization of self-replicating molecules connected in a
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in s ...
,
autocatalytic A single chemical reaction is said to be autocatalytic if one of the reaction products is also a catalyst for the same or a coupled reaction.Steinfeld J.I., Francisco J.S. and Hase W.L. ''Chemical Kinetics and Dynamics'' (2nd ed., Prentice-Hall 199 ...
manner. It was introduced in an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast w ...
(ODE) form by the
Nobel Prize in Chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
winner
Manfred Eigen Manfred Eigen (; 9 May 1927 – 6 February 2019) was a German Biophysical chemistry, biophysical chemist who won the 1967 Nobel Prize in Chemistry for work on measuring fast chemical reactions. Eigen's research helped solve major problems in ...
in 1971 and subsequently further extended in collaboration with
Peter Schuster Peter K. Schuster (born 7 March 1941) is a theoretical chemist known for his work with the German Nobel Laureate Manfred Eigen in developing the quasispecies model. His work has made great strides in the understanding of viruses and their replica ...
. It was proposed as a solution to the error threshold problem encountered during modelling of replicative molecules that hypothetically existed on the primordial Earth (see:
abiogenesis In biology, abiogenesis (from a- 'not' + Greek bios 'life' + genesis 'origin') or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothes ...
). As such, it explained how life on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
could have begun using only relatively short genetic sequences, which in theory were too short to store all essential information. The hypercycle is a special case of the
replicator equation In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. The replicator equation differs from other equations used to model replication, such as the quasispecie ...
. The most important properties of hypercycles are autocatalytic growth competition between cycles, once-for-ever selective behaviour, utilization of small selective advantage, rapid evolvability, increased information capacity, and selection against
parasitic Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson has c ...
branches.


Central ideas

The hypercycle is a cycle of connected, self-replicating
macromolecule A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
s. In the hypercycle, all molecules are linked such that each of them catalyses the creation of its successor, with the last molecule catalysing the first one. In such a manner, the cycle reinforces itself. Furthermore, each molecule is additionally a subject for self-replication. The resultant
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
is a new level of
self-organization Self-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when suffi ...
that incorporates both cooperation and selfishness. The coexistence of many genetically non-identical molecules makes it possible to maintain a high
genetic diversity Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is dis ...
of the
population Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world. Governments typically quantify the size of the resident population within their jurisdiction using a ...
. This can be a solution to the error threshold problem, which states that, in a system without ideal replication, an excess of mutation events would destroy the ability to carry
information Information is an abstract concept that refers to that which has the power to inform. At the most fundamental level information pertains to the interpretation of that which may be sensed. Any natural process that is not completely random ...
and prevent the creation of larger and fitter macromolecules. Moreover, it has been shown that hypercycles could originate naturally and that incorporating new molecules can extend them. Hypercycles are also subject to
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
and, as such, can undergo a selection process. As a result, not only does the system gain information, but its
information content In information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative wa ...
can be improved. From an evolutionary point of view, the hypercycle is an intermediate state of self-organization, but not the final solution. Over the years, the hypercycle theory has experienced many reformulations and methodological approaches. Among them, the most notable are applications of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
s,
cellular automata A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessel ...
, and
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
formulations of Eigen's problem. Despite many advantages that the concept of hypercycles presents, there were also some problems regarding the traditional model formulation using ODEs: a vulnerability to parasites and a limited size of stable hypercycles.MC Boerlijst, P Hogeweg (1991) "Self-structuring and selection: Spiral Waves as a Substrate for Prebiotic Evolution". Conference Paper ''Artificial Life II'' In 2012, the first experimental proof for the emergence of a
cooperative A cooperative (also known as co-operative, co-op, or coop) is "an autonomous association of persons united voluntarily to meet their common economic, social and cultural needs and aspirations through a jointly owned and democratically-control ...
network among fragments of self-assembling
ribozyme Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonst ...
s was published, demonstrating their advantages over self-replicating cycles. However, even though this experiment proves the existence of cooperation among the recombinase ribozyme subnetworks, this cooperative network does not form a hypercycle per se, so we still lack the experimental demonstration of hypercycles.


Model formulation


Model evolution

* * * * *


Error threshold problem

When a model of replicating molecules was created, it was found that, for effective storage of information, macromolecules on prebiotic Earth could not exceed a certain threshold length. This problem is known as the error threshold problem. It arises because replication is an imperfect process, and during each replication event, there is a risk of incorporating errors into a new
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
, leading to the creation of a
quasispecies The quasispecies model is a description of the process of the Darwinian evolution of certain self-replicating entities within the framework of physical chemistry. A quasispecies is a large group or "cloud" of related genotypes that exist in an en ...
. In a system that is deprived of high-fidelity replicases and error-correction mechanisms, mutations occur with a high probability. As a consequence, the information stored in a sequence can be lost due to the rapid accumulation of errors, a so-called
error catastrophe Error catastrophe refers to the cumulative loss of genetic information in a lineage of organisms due to high mutation rates. The mutation rate above which error catastrophe occurs is called the error threshold. Both terms were coined by Manfred ...
. Moreover, it was shown that the genome size of any organism is roughly equal to the inverse of mutation rate per site per replication. Therefore, a high mutation rate imposes a serious limitation on the length of the genome. To overcome this problem, a more specialized replication machinery that is able to copy genetic information with higher fidelity is needed. Manfred Eigen suggested that proteins are necessary to accomplish this task. However, to encode a system as complex as a protein, longer nucleotide sequences are needed, which increases the probability of a mutation even more and requires even more complex replication machinery. John Maynard Smith and Eörs Szathmáry named this vicious circle ''Eigen's Paradox''. According to current estimations, the maximum length of a replicated chain that can be correctly reproduced and maintained in
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
-free systems is about 100 bases, which is assumed to be insufficient to encode replication machinery. This observation was the motivation for the formulation of the hypercycle theory.


Models

It was suggested that the problem with building and maintaining larger, more complex, and more accurately replicated molecules can be circumvented if several information carriers, each of them storing a small piece of information, are connected such that they only control their own
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
. Studies of the mathematical model describing replicating molecules revealed that to observe a cooperative behaviour among self-replicating molecules, they have to be connected by a
positive feedback loop Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the ...
of
catalytic Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
actions. This kind of closed network consisting of self-replicating entities connected by a catalytic positive-feedback loop was named an elementary hypercycle. Such a concept, apart from an increased information capacity, has another advantage. Linking self-replication with mutual catalysis can produce nonlinear growth of the system. This, first, makes the system resistant to so-called parasitic branches. Parasitic branches are
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
coupled to a cycle that do not provide any advantage to the reproduction of a cycle, which, in turn, makes them useless and decreases the selective value of the system. Secondly, it reinforces the self-organization of molecules into the hypercycle, allowing the system to evolve without losing information, which solves the error threshold problem. Analysis of potential molecules that could form the first hypercycles in nature prompted the idea of coupling an information carrier function with enzymatic properties. At the time of the hypercycle theory formulation, enzymatic properties were attributed only to
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s, while
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
s were recognized only as carriers of information. This led to the formulation of a more complex model of a hypercycle with
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
. The proposed model consists of a number of
nucleotide sequences A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are usu ...
''I'' (''I'' stands for intermediate) and the same number of
polypeptide chains Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
''E'' (''E'' stands for enzyme). Sequences ''I'' have a limited chain length and carry the information necessary to build catalytic chains ''E''. The sequence ''I''''i'' provides the matrix to reproduce itself and a matrix to build the protein ''E''''i''. The protein ''E''''i'' gives the catalytic support to build the next sequence in the cycle, ''I''''i''+1. The self-replicating sequences ''I'' form a cycle consisting of positive and negative strands that periodically reproduce themselves. Therefore, many cycles of the +/− nucleotide collectives are linked together by the second-order cycle of enzymatic properties of ''E'', forming a catalytic hypercycle. Without the secondary loop provided by catalysis, ''I'' chains would compete and select against each other instead of cooperating. The reproduction is possible thanks to translation and polymerization functions
encoded In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication ...
in ''I'' chains. In his principal work, Manfred Eigen stated that the ''E'' coded by the ''I'' chain can be a specific
polymerase A polymerase is an enzyme ( EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base- ...
or an enhancer (or a silencer) of a more general polymerase acting in favour of formation of the successor of nucleotide chain ''I''. Later, he indicated that a general polymerase leads to the death of the system. Moreover, the whole cycle must be closed, so that ''E''''n'' must catalyse ''I''1 formation for some integer ''n'' > 1.


Alternative concepts

During their research, Eigen and Schuster also considered types of protein and nucleotide coupling other than hypercycles. One such alternative was a model with one replicase that performed polymerase functionality and that was a translational product of one of the
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
matrices existing among the quasispecies. This
RNA-dependent RNA polymerase RNA-dependent RNA polymerase (RdRp) or RNA replicase is an enzyme that catalyzes the replication of RNA from an RNA template. Specifically, it catalyzes synthesis of the RNA strand complementary to a given RNA template. This is in contrast to t ...
catalysed the replication of sequences that had specific motifs recognized by this replicase. The other RNA matrices, or just one of their strands, provided translational products which had specific anticodons and were responsible for unique assignment and
transportation Transport (in British English), or transportation (in American English), is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land (rail and road), water, cable, pipeline, ...
of amino acids. Another concept devised by Eigen and Schuster was a model in which each RNA template's replication was catalysed by its own translational product; at the same time, this RNA template performed a transport function for one amino acid type. Existence of more than one such RNA template could make translation possible. Nevertheless, in both alternative concepts, the system will not survive due to the internal competition among its constituents. Even if none of the constituents of such a system is selectively favoured, which potentially allows coexistence of all of the coupled molecules, they are not able to coevolve and optimize their properties. In consequence, the system loses its internal stability and cannot live on. The reason for inability to survive is the lack of mutual control of constituent abundances.


Mathematical model


Elementary hypercycle

The dynamics of the elementary hypercycle can be modelled using the following
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
: : \dot=x_i \left(k_i+\sum_j k_ x_j - \frac \phi \right) where : \begin x &= \sum_i x_i,\\ k_i &= f_i-d_i. \end In the equation above, ''xi'' is the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
of template ''Ii''; ''x'' is the total concentration of all templates; ''ki'' is the excess production rate of template ''Ii'', which is a difference between formation ''fi'' by self-replication of the template and its degradation ''di'', usually by
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
; ''k''''i'',''j'' is the production rate of template ''Ii'' catalysed by ''Ij''; and ''φ'' is a dilution
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
; which guarantees that the total concentration is constant. Production and degradation rates are expressed in numbers of molecules per time unit at unit concentration (''xi'' = 1). Assuming that at high concentration ''x'' the term ''ki'' can be neglected, and, moreover, in the hypercycle, a template can be replicated only by itself and the previous member of the cycle, the equation can be simplified to: : \dot = x_i \left(k_ x_-\frac\phi\right) where according to the cyclic properties, it can be assumed that : \begin k_ &= k_, \\ x_0 &= x_n. \end


Hypercycle with translation

A hypercycle with translation consists of polynucleotides ''Ii'' (with concentration ''xi'') and polypeptides ''Ei'' (with concentration ''yi''). It is assumed that the
kinetics Kinetics ( grc, κίνησις, , kinesis, ''movement'' or ''to move'') may refer to: Science and medicine * Kinetics (physics), the study of motion and its causes ** Rigid body kinetics, the study of the motion of rigid bodies * Chemical ki ...
of nucleotide synthesis follows a Michaelis–Menten-type reaction scheme in which the concentration of complexes cannot be neglected. During replication, molecules form complexes ''I''''i''''E''''i''-1 (occurring with concentration ''zi''). Thus, the total concentration of molecules (''x''''i''0 and ''y''''i''0) will be the sum of free molecules and molecules involved in a complex: : \begin x_i^0 &= x_i+z_, \\ y_i^0 &= y_i+z_. \end The dynamics of the hypercycle with translation can be described using a system of differential equations modelling the total number of molecules: : \begin \dot_i^0 &= f_i z_i-\frac \phi_x, \\ \dot_i^0 &= k_i x_i-\frac \phi_y \end where : \begin c_I &= \sum_i x_i^0, \\ c_E &= \sum_i y_i^0. \end In the above equations, ''cE'' and ''cI'' are total concentrations of all polypeptides and all polynucleotides, ''φx'' and ''φy'' are dilution fluxes, ''ki'' is the production rate of polypeptide ''Ei'' translated from the polynucleotide ''Ii'', and ''fi'' is the production rate of polynucleotide ''Ii'' synthesised by the complex ''I''''i''''E''''i''-1 (through replication and polymerization). Coupling nucleic acids with proteins in such a model of hypercycle with translation demanded the proper model for the origin of translation code as a necessary condition for the origin of hypercycle organization. At the time of hypercycle theory formulation, two models for the origin of translation code were proposed by Crick and his collaborators. These were models stating that the first codons were constructed according to either an RRY or an RNY scheme, in which R stands for the purine base, Y for pyrimidine, and N for any base, with the latter assumed to be more reliable. Nowadays, it is assumed that the hypercycle model could be realized by utilization of ribozymes without the need for a hypercycle with translation, and there are many more theories about the origin of the genetic code.


Evolution


Formation of the first hypercycles

Eigen made several assumptions about conditions that led to the formation of the first hypercycles. Some of them were the consequence of the lack of knowledge about ribozymes, which were discovered a few years after the introduction of the hypercycle concept and negated Eigen's assumptions in the strict sense. The primary of them was that the formation of hypercycles had required the availability of both types of chains: nucleic acids forming a quasispecies population and proteins with enzymatic functions. Nowadays, taking into account the knowledge about ribozymes, it may be possible that a hypercycle's members were selected from the quasispecies population and the enzymatic function was performed by RNA. According to the hypercycle theory, the first primitive polymerase emerged precisely from this population. As a consequence, the catalysed replication could exceed the uncatalysed reactions, and the system could grow faster. However, this rapid growth was a threat to the emerging system, as the whole system could lose control over the relative amount of the RNAs with enzymatic function. The system required more reliable control of its constituents—for example, by incorporating the coupling of essential RNAs into a positive feedback loop. Without this feedback loop, the replicating system would be lost. These positive feedback loops formed the first hypercycles. In the process described above, the fact that the first hypercycles originated from the quasispecies population (a population of similar sequences) created a significant advantage. One possibility of linking different chains ''I''—which is relatively easy to achieve taking into account the quasispecies properties—is that the one chain ''I'' improves the synthesis of the similar chain ''I''’. In this way, the existence of similar sequences ''I'' originating from the same quasispecies population promotes the creation of the linkage between molecules ''I'' and ''I''’.


Evolutionary dynamics

After formation, a hypercycle reaches either an internal equilibrium or a state with
oscillating Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
concentrations of each type of chain ''I'', but with the total concentration of all chains remaining constant. In this way, the system consisting of all chains can be expressed as a single, integrated entity. During the formation of hypercycles, several of them could be present in comparable concentrations, but very soon, a selection of the hypercycle with the highest fitness value will take place. Here, the fitness value expresses the adaptation of the hypercycle to the
environment Environment most often refers to: __NOTOC__ * Natural environment, all living and non-living things occurring naturally * Biophysical environment, the physical and biological factors along with their chemical interactions that affect an organism or ...
, and the selection based on it is very sharp. After one hypercycle wins the competition, it is very unlikely that another one could take its place, even if the new hypercycle would be more efficient than the winner. Usually, even large fluctuations in the numbers of internal species cannot weaken the hypercycle enough to destroy it. In the case of a hypercycle, we can speak of one-for-ever selection, which is responsible for the existence of a unique translation code and a particular
chirality Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from ...
. The above-described idea of a hypercycle's robustness results from an exponential growth of its constituents caused by the catalytic support. However,
Eörs Szathmáry Eörs Szathmáry (born 1959) is a Hungarian theoretical evolutionary biologist at the now-defunct Collegium Budapest Institute for Advanced Study and at the Department of Plant Taxonomy and Ecology of Eötvös Loránd University, Budapest. He i ...
and Irina Gladkih showed that an unconditional coexistence can be obtained even in the case of a non-enzymatic template replication that leads to a subexponential or a parabolic growth. This could be observed during the stages preceding a catalytic replication that are necessary for the formation of hypercycles. The coexistence of various non-enzymatically replicating sequences could help to maintain a sufficient diversity of RNA modules used later to build molecules with catalytic functions. From the mathematical point of view, it is possible to find conditions required for cooperation of several hypercycles. However, in reality, the cooperation of hypercycles would be extremely difficult, because it requires the existence of a complicated multi-step biochemical mechanism or an incorporation of more than two types of molecules. Both conditions seem very improbable; therefore, the existence of coupled hypercycles is assumed impossible in practice. Evolution of a hypercycle ensues from the creation of new components by the mutation of its internal species. Mutations can be incorporated into the hypercycle, enlarging it if, and only if, two requirements are satisfied. First, a new information carrier ''I''''new'' created by the mutation must be better recognized by one of the hypercycle's members ''Ii'' than the chain ''I''''i''+1 that was previously recognized by it. Secondly, the new member ''I''''new'' of the cycle has to better catalyse the formation of the polynucleotide ''I''''i''+1 that was previously catalysed by the product of its predecessor ''I''''i''. In theory, it is possible to incorporate into the hypercycle mutations that do not satisfy the second condition. They would form parasitic branches that use the system for their own replication but do not contribute to the system as a whole. However, it was noticed that such mutants do not pose a threat to the hypercycle, because other constituents of the hypercycle grow nonlinearly, which prevents the parasitic branches from growing.


Evolutionary dynamics: a mathematical model

According to the definition of a hypercycle, it is a nonlinear, dynamic system, and, in the simplest case, it can be assumed that it grows at a rate determined by a system of quadratic differential equations. Then, the competition between evolving hypercycles can be modelled using the differential equation: : \dot=q_l C_l^2-C_l \frac where : C = \sum_l C_l. Here, ''Cl'' is the total concentration of all polynucleotide chains belonging to a hypercycle ''Hl'', ''C'' is the total concentration of polynucleotide chains belonging to all hypercycles, ''ql'' is the rate of growth, and ''φ'' is a dilution flux that guarantees that the total concentration is constant. According to the above model, in the initial phase, when several hypercycles exist, the selection of the hypercycle with the largest ''ql'' value takes place. When one hypercycle wins the selection and dominates the population, it is very difficult to replace it, even with a hypercycle with a much higher growth rate ''q''.


Compartmentalization and genome integration

Hypercycle theory proposed that hypercycles are not the final state of organization, and further development of more complicated systems is possible by enveloping the hypercycle in some kind of
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. B ...
. After evolution of compartments, a genome integration of the hypercycle can proceed by linking its members into a single chain, which forms a precursor of a
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
. After that, the whole individualized and compartmentalized hypercycle can behave like a simple self-replicating entity. Compartmentalization provides some advantages for a system that has already established a linkage between units. Without compartments, genome integration would boost competition by limiting space and resources. Moreover, adaptive evolution requires the package of transmissible information for advantageous mutations in order not to aid less-efficient copies of the gene. The first advantage is that it maintains a high local concentration of molecules, which helps to locally increase the rate of synthesis. Secondly, it keeps the effect of mutations local, while at the same time affecting the whole compartment. This favours preservation of beneficial mutations, because it prevents them from spreading away. At the same time, harmful mutations cannot pollute the entire system if they are enclosed by the membrane. Instead, only the contaminated compartment is destroyed, without affecting other compartments. In that way, compartmentalization allows for selection for genotypic mutations. Thirdly, membranes protect against environmental factors because they constitute a barrier for high-weight molecules or
UV irradiation Ultraviolet germicidal irradiation (UVGI) is a disinfection method that uses short-wavelength ultraviolet (ultraviolet C or UV-C) light to kill or inactivate microorganisms by destroying nucleic acids and disrupting their DNA, leaving them unabl ...
. Finally, the membrane surface can work as a catalyst. Despite the above-mentioned advantages, there are also potential problems connected to compartmentalized hypercycles. These problems include difficulty in the transport of ingredients in and out, synchronizing the synthesis of new copies of the hypercycle constituents, and division of the growing compartment linked to a packing problem. In the initial works, the compartmentalization was stated as an evolutionary consequence of the hypercyclic organization.
Carsten Bresch Carsten Bresch (5 September 1921 – 1 March 2020) was a German geneticist and physicist. He was a professor at the University of Freiburg at the Faculty of Biology. Working in Göttingen, Cologne, Dallas, and Freiburg im Breisgau, Freiburg, he wa ...
and coworkers raised an objection that hypercyclic organization is not necessary if compartments are taken into account. They proposed the so-called package model in which one type of a polymerase is sufficient and copies all polynucleotide chains that contain a special recognition motif. However, as pointed out by the authors, such packages are—contrary to hypercycles—vulnerable to deleterious mutations as well as a fluctuation abyss, resulting in packages that lack one of the essential RNA molecules. Eigen and colleagues argued that simple package of genes cannot solve the information integration problem and hypercycles cannot be simply replaced by compartments, but compartments may assist hypercycles. This problem, however, raised more objections, and Eörs Szathmáry and László Demeter reconsidered whether packing hypercycles into compartments is a necessary intermediate stage of the evolution. They invented a stochastic corrector model that assumed that replicative templates compete within compartments, and selective values of these compartments depend on the internal composition of templates. Numerical simulations showed that when stochastic effects are taken into account, compartmentalization is sufficient to integrate information dispersed in competitive replicators without the need for hypercycle organization. Moreover, it was shown that compartmentalized hypercycles are more sensitive to the input of deleterious mutations than a simple package of competing genes. Nevertheless, package models do not solve the error threshold problem that originally motivated the hypercycle.


Ribozymes

At the time of the hypercycle theory formulation, ribozymes were not known. After the breakthrough of discovering RNA's catalytic properties in 1982, it was realized that RNA had the ability to integrate protein and nucleotide-chain properties into one entity. Ribozymes potentially serving as templates and catalysers of replication can be considered components of quasispecies that can self-organize into a hypercycle without the need to invent a translation process. In 2001, a partial RNA polymerase ribozyme was designed via
directed evolution Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis (cre ...
. Nevertheless, it was able to catalyse only a polymerization of a chain having the size of about 14 nucleotides, even though it was 200 nucleotides long. The most up-to-date version of this polymerase was shown in 2013. While it has an ability to catalyse polymerization of longer sequences, even of its own length, it cannot replicate itself due to a lack of sequence generality and its inability to transverse secondary structures of long RNA templates. However, it was recently shown that those limitations could in principle be overcome by the assembly of active polymerase ribozymes from several short RNA strands. In 2014, a cross-chiral RNA polymerase ribozyme was demonstrated. It was hypothesized that it offers a new mode of recognition between an enzyme and substrates, which is based on the shape of the substrate, and allows avoiding the Watson-Crick pairing and, therefore, may provide greater sequence generality. Various other experiments have shown that, besides bearing polymerase properties, ribozymes could have developed other kinds of evolutionarily useful catalytic activity such as synthase,
ligase In biochemistry, a ligase is an enzyme that can catalyze the joining (ligation) of two large molecules by forming a new chemical bond. This is typically via hydrolysis of a small pendant chemical group on one of the larger molecules or the enzym ...
, or
aminoacylase In enzymology, an aminoacylase () is an enzyme that catalyzes the chemical reaction : N-acyl-L-amino acid + H2O carboxylate + L-amino acid : Thus, the two substrates of this enzyme are N-acyl-L-amino acid and H2O, whereas its two p ...
activities. Ribozymal aminoacylators and ribozymes with the ability to form
peptide bond In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein cha ...
s might have been crucial to inventing translation. An RNA ligase, in turn, could link various components of quasispecies into one chain, beginning the process of a genome integration. An RNA with a synthase or a synthetase activity could be critical for building compartments and providing building blocks for growing RNA and protein chains as well as other types of molecules. Many examples of this kind of ribozyme are currently known, including a
peptidyl transferase The peptidyl transferase is an aminoacyltransferase () as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The subst ...
ribozyme, a ligase, and a nucleotide synthetase. A transaminoacylator described in 2013 has five nucleotides, which is sufficient for a trans-amino
acylation In chemistry, acylation (or alkanoylation) is the chemical reaction in which an acyl group () is added to a compound. The compound providing the acyl group is called the acylating agent. Because they form a strong electrophile when treated with ...
reaction and makes it the smallest ribozyme that has been discovered. It supports a peptidyl-RNA synthesis that could be a precursor for the contemporary process of linking amino acids to tRNA molecules. An RNA ligase's catalytic domain, consisting of 93 nucleotides, proved to be sufficient to catalyse a linking reaction between two RNA chains. Similarly, an
acyltransferase Acyltransferase is a type of transferase enzyme that acts upon acyl groups. Examples include: * Glyceronephosphate O-acyltransferase * Lecithin-cholesterol acyltransferase *Long-chain-alcohol O-fatty-acyltransferase In enzymology, a long-chain- ...
ribozyme 82 nucleotides long was sufficient to perform an acyltransfer reaction. Altogether, the results concerning the RNA ligase's catalytic domain and the acyltransferase ribozyme are in agreement with the estimated upper limit of 100 nucleotides set by the error threshold problem. However, it was hypothesized that even if the putative first RNA-dependent RNA-polymerases are estimated to be longer—the smallest reported up-to-date RNA-dependent polymerase ribozyme is 165 nucleotides long—they did not have to arise in one step. It is more plausible that
ligation Ligation may refer to: * Ligation (molecular biology), the covalent linking of two ends of DNA or RNA molecules * In medicine, the making of a ligature (tie) * Chemical ligation, the production of peptides from amino acids * Tubal ligation, a meth ...
of smaller RNA chains performed by the first RNA ligases resulted in a longer chain with the desired catalytically active polymerase domain. Forty years after the publication of Manfred Eigen's primary work dedicated to hypercycles, Nilesh Vaidya and colleagues showed experimentally that ribozymes can form catalytic cycles and networks capable of expanding their sizes by incorporating new members. However, this is not a demonstration of a hypercycle in accordance with its definition, but an example of a collectively
autocatalytic set An autocatalytic set is a collection of entities, each of which can be created catalytically by other entities within the set, such that as a whole, the set is able to catalyze its own production. In this way the set ''as a whole'' is said to be ...
. Earlier computer simulations showed that molecular networks can arise, evolve and be resistant to parasitic RNA branches. In their experiments, Vaidya et al. used an
Azoarcus ''Azoarcus'' is a genus of nitrogen-fixing bacteria. Species in this genus are usually found in contaminated water, as they are involved in the degradation of some contaminants, commonly inhabiting soil. These bacteria have also been found growi ...
group I intron ribozyme that, when fragmented, has an ability to self-assemble by catalysing recombination reactions in an autocatalytic manner. They mutated the three-nucleotide-long sequences responsible for recognition of target sequences on the opposite end of the ribozyme (namely, Internal Guide Sequences or IGSs) as well as these target sequences. Some genotypes could introduce
cooperation Cooperation (written as co-operation in British English) is the process of groups of organisms working or acting together for common, mutual, or some underlying benefit, as opposed to working in competition for selfish benefit. Many animal a ...
by recognizing target sequences of the other ribozymes, promoting their covalent binding, while other selfish genotypes were only able to self-assemble. In separation, the selfish subsystem grew faster than the cooperative one. After mixing selfish ribozymes with cooperative ones, the emergence of cooperative behaviour in a merged population was observed, outperforming the self-assembling subsystems. Moreover, the selfish ribozymes were integrated into the network of reactions, supporting its growth. These results were also explained analytically by the ODE model and its analysis. They differ substantially from results obtained in
evolutionary dynamics Evolutionary dynamics is the study of the Mathematics, mathematical principles according to which biological organisms as well as cultural ideas evolve and Evolution, evolved. This is mostly achieved through the mathematical discipline of populat ...
. According to evolutionary dynamics theory, selfish molecules should dominate the system even if the growth rate of the selfish subsystem in isolation is lower than the growth rate of the cooperative system. Moreover, Vaidya et al. proved that, when fragmented into more pieces, ribozymes that are capable of self-assembly can not only still form catalytic cycles but, indeed, favour them. Results obtained from experiments by Vaidya et al. gave a glimpse on how inefficient prebiotic polymerases, capable of synthesizing only short
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
s, could be sufficient at the pre-life stage to spark off life. This could happen because coupling the synthesis of short RNA fragments by the first ribozymal polymerases to a system capable of self-assembly not only enables building longer sequences but also allows exploiting the fitness space more efficiently with the use of the recombination process. Another experiment performed by Hannes Mutschler et al. showed that the RNA polymerase ribozyme, which they described, can be synthesized in situ from the ligation of four smaller fragments, akin to a recombination of Azoarcus ribozyme from four inactive oligonucleotide fragments described earlier. Apart from a substantial contribution of the above experiments to the research on the origin of life, they have not proven the existence of hypercycles experimentally.


Related problems and reformulations

The hypercycle concept has been continuously studied since its origin. Shortly after Eigen and Schuster published their main work regarding hypercycles,
John Maynard Smith John Maynard Smith (6 January 1920 – 19 April 2004) was a British theoretical and mathematical evolutionary biologist and geneticist. Originally an aeronautical engineer during the Second World War, he took a second degree in genetics und ...
raised an objection that the catalytic support for the replication given to other molecules is altruistic. Therefore, it cannot be selected and maintained in a system. He also underlined hypercycle vulnerability to parasites, as they are favoured by selection. Later on, Josef Hofbauer and
Karl Sigmund Karl Sigmund (born July 26, 1945) is a Professor of Mathematics at the University of Vienna and one of the pioneers of evolutionary game theory. Career Sigmund was schooled in the Lycée Francais de Vienne. From 1963 to 1968 he studied at the Ins ...
indicated that in reality, a hypercycle can maintain only fewer than five members. In agreement with Eigen and Schuster's principal analysis, they argued that systems with five or more species exhibit limited and
unstable In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
cyclic behaviour, because some species can die out due to stochastic events and break the positive feedback loop that sustains the hypercycle. The extinction of the hypercycle then follows. It was also emphasized that a hypercycle size of up to four is too small to maintain the amount of information sufficient to cross the information threshold. Several researchers proposed a solution to these problems by introducing space into the initial model either explicitly or in the form of a spatial segregation within compartments. Bresch et al. proposed a package model as a solution for the parasite problem. Later on, Szathmáry and Demeter proposed a stochastic corrector machine model. Both compartmentalized systems proved to be robust against parasites. However, package models do not solve the error threshold problem that originally motivated the idea of the hypercycle. A few years later, Maarten Boerlijst and
Paulien Hogeweg Paulien Hogeweg (born 1943) is a Dutch theoretical biologist and complex systems researcher studying biological systems as dynamic information processing systems at many interconnected levels. In 1970, together with Ben Hesper, she defined the te ...
, and later Nobuto Takeuchi, studied the replicator equations with the use of partial differential equations and cellular automata models, methods that already proved to be successful in other applications. They demonstrated that spatial self-structuring of the system completely solves the problem of global extinction for large systems and, partially, the problem of parasites. The latter was also analysed by Robert May, who noticed that an emergent rotating
spiral wave Spiral waves are travelling waves that rotate outward from a center in a spiral. They are a feature of many excitable medium, excitable media. Spiral waves have been observed in various biological systems including systems such as heart ventricula ...
pattern, which was observed during computational simulations performed on cellular automata, proved to be stable and able to survive the invasion of parasites if they appear at some distance from the wave core. Unfortunately, in this case, rotation decelerates as the number of hypercycle members increases, meaning that selection tends toward decreasing the amount of information stored in the hypercycle. Moreover, there is also a problem with adding new information into the system. In order to be preserved, the new information has to appear near to the core of the spiral wave. However, this would make the system vulnerable to parasites, and, as a consequence, the hypercycle would not be stable. Therefore, stable spiral waves are characterized by once-for-ever selection, which creates the restrictions that, on the one hand, once the information is added to the system, it cannot be easily abandoned; and on the other hand, new information cannot be added. Another model based on cellular automata, taking into account a simpler replicating network of continuously mutating parasites and their interactions with one replicase species, was proposed by Takeuchi and Hogeweg and exhibited an emergent travelling wave pattern. Surprisingly, travelling waves not only proved to be stable against moderately strong parasites, if the parasites' mutation rate is not too high, but the emergent pattern itself was generated as a result of interactions between parasites and replicase species. The same technique was used to model systems that include formation of complexes. Finally, hypercycle simulation extending to three dimensions showed the emergence of the three-dimensional analogue of a spiral wave, namely, the scroll wave.S Altmeyer, C Wilke, T Martinetz (2008) "How fast do structures emerge in hypercycle-systems?" in ''Third German Workshop on Artificial Life''


Comparison with other theories of life

The hypercycle is just one of several current theories of life, including the
chemoton The term chemoton (short for 'chemical automaton') refers to an abstract model for the fundamental unit of life introduced by Hungarian theoretical biologist Tibor Gánti. Popular articles express surprise that Gánti's work is so little known. G ...
of
Tibor Gánti Tibor Gánti (10 September 1933 – 15 April 2009) was a Hungarian theoretical biologist and biochemist, who is best known for his theory of the chemoton, a model for defining the minimal nature of life. He taught industrial biochemistry at F ...
, the (''M,R'') systems of Robert Rosen,
autopoiesis The term autopoiesis () refers to a system capable of producing and maintaining itself by creating its own parts. The term was introduced in the 1972 publication '' Autopoiesis and Cognition: The Realization of the Living'' by Chilean biologist ...
(or ''self-building'') of
Humberto Maturana Humberto Maturana Romesín (September 14, 1928 – May 6, 2021) was a Chilean biologist and philosopher. Many consider him a member of a group of second-order cybernetics theoreticians such as Heinz von Foerster, Gordon Pask, Herbert Brün ...
and
Francisco Varela Francisco Javier Varela García (September 7, 1946 – May 28, 2001) was a Chilean biologist, philosopher, cybernetician, and neuroscientist who, together with his mentor Humberto Maturana, is best known for introducing the concept of autopoiesi ...
, and the
autocatalytic set An autocatalytic set is a collection of entities, each of which can be created catalytically by other entities within the set, such that as a whole, the set is able to catalyze its own production. In this way the set ''as a whole'' is said to be ...
s of
Stuart Kauffman Stuart Alan Kauffman (born September 28, 1939) is an American medical doctor, theoretical biologist, and complex systems researcher who studies the origin of life on Earth. He was a professor at the University of Chicago, University of Pennsylv ...
, similar to an earlier proposal by
Freeman Dyson Freeman John Dyson (15 December 1923 – 28 February 2020) was an English-American theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrices, mathematical formulation of quantum m ...
. All of these (including the hypercycle) found their original inspiration in Erwin Schrödinger's book ''What is Life?'' but at first they appear to have little in common with one another, largely because the authors did not communicate with one another, and none of them made any reference in their principal publications to any of the other theories. Nonetheless, there are more similarities than may be obvious at first sight, for example between Gánti and Rosen. Until recently there have been almost no attempts to compare the different theories and discuss them together.


Last Universal Common Ancestor (LUCA)

Some authors equate models of the origin of life with LUCA, the Last Universal Common Ancestor of all extant life. This is a serious error resulting from failure to recognize that L refers to the ''last'' common ancestor, not to the ''first'' ancestor, which is much older: a large amount of evolution occurred before the appearance of LUCA. Gill and Forterre expressed the essential point as follows:
LUCA should not be confused with the first cell, but was the product of a long period of evolution. Being the "last" means that LUCA was preceded by a long succession of older "ancestors."


References

{{reflist, 35em


External links


J. Padgett's Hypercycle model implemented in repast
Origin of life Self-organization