Hydraulic Redistribution
   HOME

TheInfoList



OR:

Hydraulic redistribution is a passive mechanism where water is transported from moist to dry soils via subterranean networks. It occurs in vascular plants that commonly have roots in both wet and dry soils, especially plants with both
taproot A taproot is a large, central, and dominant root from which other roots sprout laterally. Typically a taproot is somewhat straight and very thick, is tapering in shape, and grows directly downward. In some plants, such as the carrot, the taproo ...
s that grow vertically down to the
water table The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with water. It can also be simply explained as the depth below which the ground is saturated. T ...
, and
lateral roots Lateral roots, emerging from the pericycle (meristematic tissue), extend horizontally from the primary root (radicle) and over time makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil, ...
that sit close to the surface. In the late 1980s, there was a movement to understand the full extent of these subterranean networks. Since then it was found that vascular plants are assisted by
fungal A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from th ...
networks which grow on the root system to promote water redistribution.


Process

Hot, dry periods, when the surface soil dries out to the extent that the lateral roots exude whatever water they contain, will result in the death of such lateral roots unless the water is replaced. Similarly, under extremely wet conditions when lateral roots are inundated by flood waters, oxygen deprivation will also lead to root peril. In plants that exhibit hydraulic redistribution, there are
xylem Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
pathways from the taproots to the laterals, such that the absence or abundance of water at the laterals creates a pressure potential analogous to that of
transpirational pull Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
. In drought conditions,
ground water Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidate ...
is drawn up through the taproot to the laterals and exuded into the surface soil, replenishing that which was lost. Under flooding conditions, plant roots perform a similar function in the opposite direction. Though often referred to as hydraulic lift, movement of water by the plant roots has been shown to occur in any direction. This phenomenon has been documented in over sixty plant species spanning a variety of plant types (from herbs and grasses to shrubs and trees) and over a range of environmental conditions (from the Kalahari Desert to the Amazon Rainforest).


Causes

The movement of this water can be explained by a water transport theory throughout a plant. This well-established water transport theory is called the
cohesion-tension theory Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
. In brief, it explains the movement of water throughout the plant depends on having a continuous column of water, from the leaves to roots. Water is then pulled up from the roots to the leaves moving throughout the plant's
vascular system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
, all facilitated by the differences in
water potential Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...
in the
boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary cond ...
s of the
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former te ...
and the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
. Therefore, the driving force for moving water through a plant is the cohesive strength of water molecules and a pressure gradient from the roots to the leaves. This theory is still applied when the boundary layer to the atmosphere is closed, e.g. when
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclud ...
stomata are closed or in senesced plants. The pressure gradient is developed between soil layers with different water potentials causing water to move by the roots from wetter to drier soil layers in a similar manner as when a plant is transpiring.


Fungal associations

It has been understood that hydraulic lift aids the
host A host is a person responsible for guests at an event or for providing hospitality during it. Host may also refer to: Places * Host, Pennsylvania, a village in Berks County People *Jim Host (born 1937), American businessman * Michel Host ...
plant and its neighboring plants in the transportation of water and other vital nutrients. At that time, the hydraulic lift described as the movement of water and soil nutrients from a vascularized host into the soil during at night mostly. Then after studies in the 2000s, a more comprehensive word was taken into consideration where it described a bi-directional and passive movement exhibited by the plant roots and further assisted by
mycorrhizal networks A Mycorrhizal network (also known as a common mycorrhizal network or CMN) is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individu ...
. A 2015 study then described a "direct transfer of hydraulically redistributed water" between the host and
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
into the surrounding root system. As mentioned, hydraulic redistribution not only transports water but nutrients as well. The fungi most likely to form water and nutrient networks are
Ectomycorrhizae An ectomycorrhiza (from Greek ἐκτός ', "outside", μύκης ', "fungus", and ῥίζα ', "root"; pl. ectomycorrhizas or ectomycorrhizae, abbreviated EcM) is a form of symbiotic relationship that occurs between a fungal symbiont, or myco ...
and Arbuscular mycorrhizae.


Significance

The
ecological Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps wi ...
importance of hydraulically redistributed water is becoming better understood as this phenomenon is more carefully examined. Water redistribution by plant roots has been found influencing crop irrigation, where watering schemes leave a harsh heterogeneity in soil moisture. This influencing process also assist in seedling success. The plant roots have been shown to smooth or homogenize the soil moisture. This sort of smoothing out of soil moisture is important in maintaining plant root health. The redistribution of water from deep moist layers to shallow drier layers by large trees has shown to increase the moisture available in the daytime to meet the transpiration demand. The implications of hydraulic redistribution seem to have an important influence on plant
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
s. Whether or not plants redistribute water through the soil layers can affect plant population dynamics, such as the facilitation of neighboring species. The increase in available daytime soil moisture can also offset low transpiration rates due to drought (''see also
drought rhizogenesis Drought rhizogenesis is an adaptive root response to drought stress. New emerging roots are short, swollen, and hairless, capable of retaining turgor pressure and resistant to prolonged desiccation. Upon rewatering, they are capable of quickly for ...
'') or alleviate competition for water between competing plant species. Water redistributed to the near surface layers may also influence plant nutrient availability.


Observations and modeling

Due to the ecological significance of hydraulically redistributed water, there is an ongoing effort to continue the categorization of plants exhibiting this behaviour and adapting this physiological process into land-surface models to improve model predictions. Traditional methods of observating hydraulic redistribution include Deuterium isotope traces, sap flow, and soil moisture. In attempts to characterize the magnitude of the water redistributed, numerous models (both empirically and theoretically based) have been developed.


See also

* Cohesion tension theory *
Evapotranspiration Evapotranspiration (ET) is the combined processes by which water moves from the earth’s surface into the atmosphere. It covers both water evaporation (movement of water to the air directly from soil, canopies, and water bodies) and transpi ...
*
Mycorrhizal network A Mycorrhizal network (also known as a common mycorrhizal network or CMN) is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects indivi ...
*
Soil plant atmosphere continuum The soil-plant-atmosphere continuum (SPAC) is the pathway for water moving from soil through plants to the atmosphere. Continuum in the description highlights the continuous nature of water connection through the pathway. The low water potential of ...
*
Water potential Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...


References


Further reading

* {{DEFAULTSORT:Hydraulic Redistribution Plant physiology Hydrology Plant roots Ecological processes Soil physics Water and the environment