Human Engineering Laboratory
   HOME

TheInfoList



OR:

The Human Engineering Laboratory (HEL) was a research institution under the
U.S. Army Materiel Command U.S. Army Materiel Command (AMC) is the primary provider of materiel to the United States Army. The Command's mission includes the management of installations, as well as maintenance and parts distribution. It was established on 8 May 1962 and wa ...
that specialized in human performance research, human factors engineering, robotics, and human-in-the-loop technology. Located at Aberdeen Proving Ground, HEL acted as the Army’s lead laboratory for human factors and ergonomics research from 1951 to 1992, during which researchers investigated methods to maximize combat effectiveness, improve weapons and equipment designs, and reduce operation costs and errors. HEL was one of the seven Army laboratories that merged together to form the U.S. Army Research Laboratory (ARL) in 1992.


History

In 1951, Major General Elbert Louis Ford, the Chief of Ordnance for the U.S. Army Ordnance Corps, wrote a letter to Maj. Gen. Edward MacMorland, the Commanding General at Aberdeen Proving Ground, about the Army’s need for more advanced human factors research. It stated, "It appears timely to provide human engineering assessments in our development engineering designs and in our tests of these designs. Therefore, it is proposed that certain human engineering services be included in the activities at Aberdeen Proving Ground." In December 1951, the Ordnance Corps established the Human Engineering Group at Aberdeen Proving Ground following studies and surveys that recommended a more concrete, systematized effort of integrating human factors in weapons and equipment design. The group initially consisted of seven people and was led by its first director, Dr. Ben Ami Blau, who slowly increased the work force to around 40 military and civilian personnel. In 1953, the group’s name was officially changed to the U.S. Army Ordnance Corps Human Engineering Laboratories. In February 1957, Dr. John D. Weisz succeeded Blau as HEL’s director and served as the lab’s director for over 35 years until his retirement in 1992. By that point, HEL amassed a total of 257 military and civilian employees and gained international recognition for its research in the field of human factors. During Weisz’s tenure as director, HEL underwent several organizational changes. When the Army reorganization took effect in 1962, HEL became a corporate laboratory within the newly established U.S. Army Materiel Command (AMC) and became responsible for coordinating all of the Army’s human factors engineering initiatives. In the late 1950s and early 1960s, HEL provided several project offices at
Redstone Arsenal Redstone Arsenal (RSA) is a United States Army post and a census-designated place (CDP) adjacent to Huntsville in Madison County, Alabama, United States and is part of the Huntsville-Decatur Combined Statistical Area. The Arsenal is a garrison f ...
with human factors engineering support during the development of various missile systems, such as the
Hawk Hawks are bird of prey, birds of prey of the family Accipitridae. They are widely distributed and are found on all continents except Antarctica. * The subfamily Accipitrinae includes goshawks, sparrowhawks, sharp-shinned hawks and others. Th ...
,
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, Pershing, Saturn, and Patriot systems. In the process of developing several human factors engineering military specifications, standards, and data item descriptors with the
U.S. Army Missile Command The United States Army Aviation and Missile Command (AMCOM) develops, acquires, fields and sustains aviation, missile and unmanned aerial vehicles. AMCOM is primarily responsible for lifecycle management of army missile, helicopter, unmanned gro ...
, it became evident that there were severe deficiencies in HEL’s knowledge of human performance due to insufficient equipment and lack of funding. Examples of data voids included the effects of acoustical energy on operator health and performance as well as knowledge on the symbolic representation of information on displays. In response, HEL identified the areas that required in-depth research and initiated experiments to specifically fill those data voids. These improvements eventually enabled the laboratory to develop the first simulation of the operating consoles for the Patriot system as well as apply human factors engineering to its design. In 1968, the Army consolidated HEL, the Ballistic Research Laboratory, the Coating and Chemical Laboratory, the Nuclear Defense Laboratory, and the Army Materiel Systems Analysis Agency to create the Aberdeen Research and Development Center, which was officially established in 1969. In this new organizational structure, each of the five laboratories was managed by a civilian technical director who reported directly to a common commanding officer. However, the Center lasted only until 1972, and HEL quickly returned to being a corporate laboratory under AMC. In 1975, AMC approved a pilot program that converted the human engineering groups at its Major Subordinate Commands into HEL detachments. HEL also gained field office representatives at major centers and schools in the
U.S. Army Training and Doctrine Command The United States Army Training and Doctrine Command (TRADOC) is a major command of the United States Army headquartered at Fort Eustis, Virginia. It is charged with overseeing training of Army forces and the development of operational doctrine. ...
. When AMC established the U.S. Army Laboratory Command (LABCOM) in 1985, HEL was one of the laboratories that became incorporated under the new Major Subordinate Command. Other elements that were realigned under LABCOM included the Ballistic Research Laboratory, the
Harry Diamond Laboratories The Harry Diamond Laboratories (HDL) was a research facility of the Ordnance Development Division of the National Bureau of Standards and later the US Army, most notable for its work on proximity fuzes in World War II. The organization was founded ...
, the Materials Technology Laboratory, the
Electronics Technology and Devices Laboratory The Electronics Technology and Devices Laboratory (ETDL) was a research institution located at Fort Monmouth, New Jersey that served as the U.S. Army's central laboratory for electronics research from 1971 to 1992. ETDL was one of the seven Army la ...
, the Vulnerability Assessment Laboratory, the
Atmospheric Sciences Laboratory The Atmospheric Sciences Laboratory (ASL) was a research institution under the U.S. Army Materiel Command that specialized in artillery meteorology, electro-optical climatology, atmospheric optics data, and atmospheric characterization from 1965 to ...
, and the Army Research Office. During the 1980s, HEL focused much of its resources on the Army's Manpower and Personnel Integration (MANPRINT) initiative. As the lead AMC agency for human factors engineering in MANPRINT, HEL developed new policies and tools to address issues related to systems safety, manpower, training, and health hazards in material development programs. HEL was consolidated with the other AMC corporate research laboratories to form ARL in 1992. Its operations were merged with the MANPRINT functions of the U.S. Army Research Institute for the Behavioral and Social Sciences to create ARL’s Human Research and Engineering Directorate.


Research

The Human Engineering Laboratory was responsible for providing the Army with human factors engineering support in the design of combat vehicles,
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as hot air ...
, artillery air defense, weapons, equipment, and more. Human factors engineering places more support in considering the needs and convenience of the operator early in the design phase of weapons and equipment in order to reduce training time, labor, and human error. Researchers at HEL and its field offices conducted human performance tests at Aberdeen Proving Ground or other military installations and later work with material developers and contractors in the material acquisition process to apply their findings in material design. For these human performance tests, researchers brought in non-commissioned officers from the Army’s major military specialties as well as regular combat troops and soldiers who completed basic training to help evaluate how an equipment would fare in a battlefield environment. HEL’s research covered areas such as the following: acoustics research,
communications-electronics In telecommunication, communications-electronics (C-E) is the specialized field concerned with the use of electronic devices and systems for the acquisition or acceptance, processing, storage, display, analysis, protection, disposition, and trans ...
, fire support control, forward area supply and transfer, human visual aspects, learning and memory, logistics systems, military operations on urbanized terrain, physiological and gender factors,
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
,
selective attention Attentional control, colloquially referred to as concentration, refers to an individual's capacity to choose what they pay attention to and what they ignore. It is also known as endogenous attention or executive attention. In lay terms, attenti ...
, stress research, systems integration,
target acquisition Target acquisition is the detection and identification of the location of a target in sufficient detail to permit the effective employment of lethal and non-lethal means. The term is used for a broad area of applications. A "target" here is an e ...
,
test bed A testbed (also spelled test bed) is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computational tools, and new technologies. The term is used across many disciplines to describe experimental rese ...
vehicle development, text and graphic displays, visual performance, and
visual search Visual search is a type of perception, perceptual task requiring attention that typically involves an active scan of the visual environment for a particular object or feature (the target) among other objects or features (the distractors). Visual s ...
. HEL initially had three directorates to govern its research and responsibilities. Teams in the Behavioral Research Directorate managed basic human factors research that studied systems from a soldier’s point of view. Researchers focused on factors such as vision, hearing, endurance, stress, strength, height, and weight, and recorded their findings in a large data bank that other Defense agencies could access. The Systems Performance and Concepts Directorate maintained research teams that performed tests on various weapons and equipment. Taking into account everything from noise levels produced by a gun to the ease with which an operator could reach a vehicle’s brake pedal, researchers in this directorate evaluated the man-machine interface for gaps in safety and efficiency. Finally, teams in the Human Engineering Applications Directorate worked directly with military installations to ensure that all projects took human factors engineering into account during the design process. In addition to aiding the design and development of military technologies, HEL researchers also conducted troubleshooting to identify human engineering problems whenever soldiers in the fielded reported issues with operating or maintaining a piece of equipment. By the late 1980s, HEL was reorganized and divided into six technical divisions: Aviation and Air Defense, Behavioral Research, Close Combat-Light and Heavy, Combat Service Support, Fire Support and Target Acquisition, and Field Support.


Aviation and Air Defense

The Aviation and Air Defense Division featured teams of engineers, computer scientists, and psychologists that worked together to enhance the operator interface of aviation and air defense material. The division’s three main teams—the Aviation team, Air Defense team, and Systems Simulation team—applied human factors engineering to the Army’s combined arms counter-air approach to air defense.


Behavioral Research

The Behavioral Research Division conducted research pertaining to the psychological and psychophysiological capabilities and limitations of Soldiers. Topics of particular interest included the soldier-machine interface, performance in stressful environments, and human information processing. Within the division, four major teams carried out the research. The Auditory Performance team studied the mechanisms by which noises affect soldiers. The Remote Operations and Information Processing team conducted research that improved the effectiveness of systems that rely on indirect or altered presentations of visual information. The Stress and Performance team generated performance data that quantified the effects of stress. The Visual Performance team examined new methods to enhance how soldiers process visual stimuli, such as conducting research into eye movements.


Close Combat - Light and Heavy

The Close Combat-Light and Heavy Division performed evaluations on individual Army weapons, clothing, equipment, and combat vehicles to increase the individual’s survivability and efficacy on the battlefield. The Individual Soldier and Equipment team focused on individual weapons including small arms and light antitank weapons as well as clothing and ancillary equipment such as backpacks and sleeping bags. The Nuclear Biological Chemical Defense team oversaw protective equipment such as chemical protective overgarments, masks, and test kits. The Armor team was responsible for human factors engineering considerations in tracked and wheeled combat vehicles, such as tanks, trucks, and jeeps. The Modeling Applications and Analysis team and the Systems Integration team developed ergonomic models and analysis technologies, respectively, that helped inform new designs.


Combat Service Support

The Combat Service Support Division consisted of teams that conducted research related to
artificial intelligence Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by animals and humans. Example tasks in which this is done include speech re ...
and robotics. The Robotic Sciences and Military Applications team explored robotic applications to improve survivability in adverse environments, the Intelligence Machine Interface team developed the knowledge base for interfacing the soldier with various robotic devices, and the Tactical Logistics Systems team handled the application of AI to logistical systems.


Fire Support and Target Acquisition

The Fire Support and Target Acquisition Division directed efforts to improve the quality and quantity of artillery fire support while also simplifying the tasks necessary to provide this artillery fire support. Researchers often utilized commercially available test bed technologies to evaluate solutions to soldier and machine interface problems. The Test Bed Development team created new systems to evaluate concepts intended to reduce crew size and training requirements as well as increase survivability and firing platform responsiveness. The Combined Arms Command and Control team investigated new methods to simplify the planning of supporting artillery fires and enhance their responsiveness by improving the command and control interface. The Studies and Concepts team devised new fire support systems concepts, which enabled the team to define fire support system errors and develop a novel Global Positioning System artillery fuze concept.


Field Support

The Field Support Division consisted of 16 field detachments and offices across the AMC. Researchers assigned to these detachments and field offices provided human factors advice to material developers and prepared Manpower and Personnel Integration assessments of Army material systems.


HELBAT

As part of its mission, HEL managed the Human Engineering Laboratory Battalion Artillery Test (HELBAT) program, a series of field experiments designed to study the capabilities of the Army’s field artillery battalions. Conducted during the Army’s operational readiness tests, the HELBAT not only enabled HEL to isolate and identify sources of
human error Human error refers to something having been done that was " not intended by the actor; not desired by a set of rules or an external observer; or that led the task or system outside its acceptable limits".Senders, J.W. and Moray, N.P. (1991) Human ...
during artillery fire but also provided researchers with an opportunity to improve how the artillery evaluations were conducted. Furthermore, it allowed the Army to establish a systematic and repeatable procedure for collecting reliable data of artillery operations on the battalion scale. In 1969, HEL launched HELBAT I, which took place at Fort Hood with battalions of M109 self-propelled 155mm howitzers from the 1st Armored Division. Although the first HELBAT was limited to the study of surprise predicted fire, it revealed that the biggest source of error, about 50 percent of the total system error, was the forward observer’s inability to locate himself and targets accurately. The test found that soldiers often made errors when estimating range at long distances and had difficulty reading the M2 artillery compass. Following HELBAT I, HEL worked with the Frankford Arsenal to develop a laser range finder for the forward observer that could not only measure distances but also locate targets using an azimuth scale. Two years later, HEL conducted HELBAT II, which saw a reduction in average target location errors from 490 meters to 21 meters with the laser range finder. Improvements to other aspects of the artillery were made in subsequent HELBATs. During the 1970s, HEL conducted five more HELBATs, and HELBAT VIII took place in 1981. HEL also conducted similar field tests on armor systems, infantry systems, and rotorcraft systems during the HEL Armor System Test (HELAST), the HEL infantry system test (HELIST), and the HEL helicopter armament test (HELHAT), respectively.


Projects

The Human Engineering Laboratory was involved in the development or testing of the following technologies: *
Beretta 92SB The Beretta 92 (also Beretta 96 and Beretta 98) is a series of semi-automatic pistols designed and manufactured by Beretta of Italy. The Beretta 92 was designed in 1975, and production began in 1976. Many variants in several different calibers co ...
: In response to the increasing number of female troops entering the service in the 1970s, HEL conducted testing on a wide range of handguns in order to find a suitable replacement for the
M1911 pistol The M1911 (Colt 1911 or Colt Government) is a single-action, recoil-operated, semi-automatic pistol chambered for the .45 ACP cartridge. The pistol's formal U.S. military designation as of 1940 was ''Automatic Pistol, Caliber .45, M1911'' for th ...
, the standard issue sidearm for the Army since 1911. The data collected by HEL researchers helped influence the Army’s decision in 1985 to adopt the lighter Beretta 92SB as the new designated service pistol. *Field Material Handling Robot (FMR): In cooperation with the
National Institute of Standards and Technology The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
and members of industry, HEL developed a six-axis, semi-autonomous robot during the late 1980s that was capable of lifting cargo as heavy as 1800kg as high as 9 meters. Designed for loading and unloading operations at Army supply nodes, the FMR was the first of its kind and was recognized as the largest, most powerful robot in the world at the time. *
MIM-23 Hawk The Raytheon MIM-23 HAWK ("Homing all the way killer") is an American medium-range surface-to-air missile. It was designed to be a much more mobile counterpart to the MIM-14 Nike Hercules, trading off range and altitude capability for a much sm ...
: In 1956, HEL was requested by Redstone Arsenal to monitor the human factors engineering aspect of the missile development. * M41 Walker Bulldog: During the mid-1950s, HEL performed a human factors evaluation of the M41A1 tank’s 76mm gun. * MGM-18 Lacrosse: During the late 1950s, HEL performed a human factors evaluation of the surface-to-surface guided missile system. A total of 75 specific improvements were made, such as more efficient designs for cable connectors and knobs. * PGM-19 Jupiter: Starting in 1958, HEL provided human factors engineering support in the development of the JUPITER Intermediate Range Ballistic Missile System. Although most of the design work was completed by this point, HEL’s efforts identified human factors requirements in the design of the system as well as possible design deficiencies. * MGM-29 Sergeant: Starting in 1957, HEL provided human factors engineering support in the development of the SERGEANT Artillery Guided Missile System. *
FIM-43 Redeye The General Dynamics FIM-43 Redeye is a man-portable surface-to-air missile system. It uses passive infrared homing to track its target. Production began in 1962 andin anticipation of the Redeye II, which later became the FIM-92 Stingerended in t ...
: Starting in 1958, HEL provided human factors engineering support in the development of the Redeye anti-aircraft weapon system. *
M72 LAW The M72 LAW (light anti-tank weapon, also referred to as the light anti-armor weapon or LAW as well as LAWS: light anti-armor weapons system) is a portable one-shot unguided anti-tank weapon. The solid rocket propulsion unit was developed in th ...
: Starting in 1958, HEL provided human factors engineering support directed toward evaluating the configuration of the weapon system as well as address its sighting and noise problems. * Auditory Hazard Assessment Algorithm for Humans (AHAAH): In 1987, HEL developed the first mathematical model of the human auditory system that can assess the noise hazard for the entire range of impulse noise relevant to the Army. *Audio Tactile Display (ATD): In 1976, HEL developed the world’s first electronic calculator for the visually impaired. *Integrated Helicopter Control System: During the 1970s, HEL invented a helicopter control system that enabled a pilot to fly the aircraft one-handed. The system debuted in 1976 on a OH-58 helicopter. *
Nike Zeus Nike Zeus was an anti-ballistic missile (ABM) system developed by the US Army during the late 1950s and early 1960s that was designed to destroy incoming Soviet intercontinental ballistic missile warheads before they could hit their targets. ...
: During the early 1960s, HEL provided human factors engineering support during the development of the Nike Zeus. *
MIM-104 Patriot The MIM-104 Patriot is a surface-to-air missile (SAM) system, the primary of its kind used by the United States Army and several allied states. It is manufactured by the U.S. defense contractor Raytheon and derives its name from the radar compon ...
: Beginning in the mid-1960s, HEL supported the development of the Patriot system in various ways. HEL researchers created a system that faithfully simulated the Patriot engagement control console and devised solutions to its man-machine interface problems. In addition to facilitating the restructuring of the Patriot system’s display and controls, the simulator also helped train air defense console operators in testing the Patriot system. Various other human factors improvements were also made thanks to HEL’s efforts, including an automatic designation of priority threats which reduced operator reaction time, an enhanced layout of the graphical and tabular displays, and improved control coding and labeling.


References

{{coord missing, United States Research installations of the United States Army