High Level Synthesis
   HOME

TheInfoList



OR:

High-level synthesis (HLS), sometimes referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis, is an automated design process that takes an abstract behavioral specification of a digital system and finds a register-transfer level structure that realizes the given behavior. Synthesis begins with a high-level specification of the problem, where behavior is generally decoupled from low-level circuit mechanics such as
clock A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month and the ...
-level timing. Early HLS explored a variety of input specification languages,IEEE Xplor
High-Level Synthesis: Past, Present, and Future
DOI 10.1109/MDT.2009.83
although recent research and commercial applications generally accept synthesizable subsets of ANSI C/ C++/ SystemC/
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation ...
. The code is analyzed, architecturally constrained, and scheduled to
transcompile A source-to-source translator, source-to-source compiler (S2S compiler), transcompiler, or transpiler is a type of translator that takes the source code of a program written in a programming language as its input and produces an equivalent sou ...
into a
register-transfer level In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those ...
(RTL) design in a hardware description language (HDL), which is in turn commonly synthesized to the gate level by the use of a logic synthesis tool. The goal of HLS is to let hardware designers efficiently build and verify hardware, by giving them better control over optimization of their design architecture, and through the nature of allowing the designer to describe the design at a higher level of abstraction while the tool does the RTL implementation. Verification of the RTL is an important part of the process. Hardware can be designed at varying levels of abstraction. The commonly used levels of abstraction are gate level,
register-transfer level In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those ...
(RTL), and
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
ic level. While logic synthesis uses an RTL description of the design, high-level synthesis works at a higher level of abstraction, starting with an algorithmic description in a high-level language such as SystemC and ANSI C/C++. The designer typically develops the module functionality and the interconnect protocol. The high-level synthesis tools handle the micro-architecture and transform untimed or partially timed functional code into fully timed RTL implementations, automatically creating cycle-by-cycle detail for hardware implementation. The (RTL) implementations are then used directly in a conventional logic synthesis flow to create a gate-level implementation.


History

Early academic work extracted scheduling, allocation, and binding as the basic steps for high-level-synthesis. Scheduling partitions the algorithm in control steps that are used to define the states in the finite-state machine. Each control step contains one small section of the algorithm that can be performed in a single clock cycle in the hardware. Allocation and binding maps the instructions and variables to the hardware components, multiplexers, registers and wires of the data path. First generation behavioral synthesis was introduced by Synopsys in 1994 as Behavioral Compiler and used Verilog or VHDL as input languages. The abstraction level used was partially timed (clocked) processes. Tools based on behavioral Verilog or VHDL were not widely adopted in part because neither languages nor the partially timed abstraction were well suited to modeling behavior at a high level. 10 years later, in early 2004, Synopsys end-of-lifed Behavioral Compiler. In 1998,
Forte Design Systems Forte Design Systems, Inc. was a San Jose, CA, based provider of high-level synthesis (HLS) software products, also known as electronic system-level (ESL) synthesis. Forte's main product was Cynthesizer. On February 14, 2014, Forte was acquired b ...
introduced its Cynthesizer tool which used SystemC as an entry language instead of Verilog or VHDL. Cynthesizer was adopted by many Japanese companies in 2000 as Japan had a very mature SystemC user community. The first high-level synthesis tapeout was achieved in 2001 by
Sony , commonly stylized as SONY, is a Japanese multinational conglomerate corporation headquartered in Minato, Tokyo, Japan. As a major technology company, it operates as one of the world's largest manufacturers of consumer and professional ...
using Cynthesizer. Adoption in the United States started in earnest in 2008.


Source input

The most common source inputs for high-level synthesis are based on standard languages such as ANSI C/ C++, SystemC and
MATLAB MATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation ...
. High-level synthesis typically also includes a bit-accurate executable specification as input, since to derive an efficient hardware implementation, additional information is needed on what is an acceptable Mean-Square Error or Bit-Error Rate etc. For example, if the designer starts with an FIR filter written using the "double" floating type, before he can derive an efficient hardware implementation, they need to perform numerical refinement to arrive at a fixed-point implementation. The refinement requires additional information on the level of quantization noise that can be tolerated, the valid input ranges etc. This bit-accurate specification makes the high level synthesis source specification functionally complete. Normally the tools infer from the high level code a Finite State Machine and a Datapath that implement arithmetic operations.


Process stages

The high-level synthesis process consists of a number of activities. Various high-level synthesis tools perform these activities in different orders using different algorithms. Some high-level synthesis tools combine some of these activities or perform them iteratively to converge on the desired solution. * Lexical processing * Algorithm optimization * Control/Dataflow analysis * Library processing * Resource allocation * Scheduling * Functional unit binding * Register binding * Output processing * Input Rebundling


Functionality

In general, an algorithm can be performed over many clock cycles with few hardware resources, or over fewer clock cycles using a larger number of ALUs, registers and memories. Correspondingly, from one algorithmic description, a variety of hardware microarchitectures can be generated by an HLS compiler according to the directives given to the tool. This is the same trade off of execution speed for hardware complexity as seen when a given program is run on conventional processors of differing performance, yet all running at roughly the same clock frequency.


Architectural constraints

Synthesis constraints for the architecture can automatically be applied based on the design analysis. These constraints can be broken into * Hierarchy * Interface * Memory * Loop * Low-level timing constraints * Iteration


Interface synthesis

Interface Synthesis refers to the ability to accept pure C/C++ description as its input, then use automated interface synthesis technology to control the timing and communications protocol on the design interface. This enables interface analysis and exploration of a full range of hardware interface options such as streaming, single- or dual-port RAM plus various handshaking mechanisms. With interface synthesis the designer does not embed interface protocols in the source description. Examples might be: direct connection, one line, 2 line handshake, FIFO.


Vendors

Data reported on recent Survey * MATLAB HDL Code

from
Mathworks MathWorks is an American privately held corporation that specializes in mathematical computing software. Its major products include MATLAB and Simulink, which support data analysis and simulation. History The company's key product, MATLAB, was ...
* HLS-QSP from CircuitSutra Technologies * C-to-Silicon from
Cadence Design Systems Cadence Design Systems, Inc. (stylized as cādence), headquartered in San Jose, California, is an American multinational corporation, multinational computational software company, founded in 1988 by the merger of SDA Systems and ECAD, Inc. The co ...
* Concurrent Acceleration from Concurrent EDA * Symphony C Compiler from Synopsys * QuickPlay from PLDA * PowerOpt from ChipVision * Cynthesizer from
Forte Design Systems Forte Design Systems, Inc. was a San Jose, CA, based provider of high-level synthesis (HLS) software products, also known as electronic system-level (ESL) synthesis. Forte's main product was Cynthesizer. On February 14, 2014, Forte was acquired b ...
(now Stratus HLS from
Cadence Design Systems Cadence Design Systems, Inc. (stylized as cādence), headquartered in San Jose, California, is an American multinational corporation, multinational computational software company, founded in 1988 by the merger of SDA Systems and ECAD, Inc. The co ...
) * Catapult C from Calypto Design Systems, part of
Mentor Graphics Siemens EDA is a US-based electronic design automation (EDA) multinational corporation for electrical engineering and electronics, headquartered in Wilsonville, Oregon. Founded in 1981 as Mentor Graphics, the company was acquired by Siemens in ...
as of 2015, September 16 * Pipeline

* CyberWorkBench from
NEC is a Japanese multinational corporation, multinational information technology and electronics corporation, headquartered in Minato, Tokyo. The company was known as the Nippon Electric Company, Limited, before rebranding in 1983 as NEC. It prov ...
* Mega Hardware * C2R from CebaTech * CoDeveloper from Impulse Accelerated Technologies * HercuLeS by Nikolaos Kavvadias * PICO from Synfora, acquired by Synopsys in June 2010 (PICO = Program In/Code Out) * xPilot from University of California, Los Angeles * Vsyn from vsyn.ru * ngDesign from SynFlow


See also

* C to HDL *
Electronic design automation Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing Electronics, electronic systems such as integrated circuits and printed circuit boards. The tools wo ...
(EDA) * Electronic system-level (ESL) * Logic synthesis *
High-level verification High-level verification (HLV), or electronic system-level (ESL) verification, is the task to verify ESL designs at high abstraction level, i.e., it is the task to verify a model that represents hardware above register-transfer level (RTL) abstract ...
(HLV) * SystemVerilog *
Hardware acceleration Hardware acceleration is the use of computer hardware designed to perform specific functions more efficiently when compared to software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calcula ...


References


Further reading

* * * * * * covers the use of C/C++, SystemC, TML and even UML * * * *


External links


Vivado HLS course on Youtube


{{DEFAULTSORT:High-Level Synthesis Electronic design automation Hardware acceleration