Harshad Numbers
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Harshad numbers were defined by
D. R. Kaprekar Dattatreya Ramchandra Kaprekar ( mr, दत्तात्रेय रामचंद्र कापरेकर; 17 January 1905 – 1986) was an Indian recreational mathematician who described several classes of natural numbers incl ...
, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by
Ivan M. Niven Ivan Morton Niven (October 25, 1915 May 9, 1999) was a Canadian-American mathematician, specializing in number theory and known for his work on Waring's problem. He worked for many years as a professor at the University of Oregon, and was presiden ...
at a conference on number theory in 1977.


Definition

Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and 6. The number 12 is a harshad number in all bases except octal.


Examples

* The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9 (1 + 8 = 9), and 18 is divisible by 9. * The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91). * The number 19 is not a harshad number in base 10, because the sum of the digits 1 and 9 is 10 (1 + 9 = 10), and 19 is not divisible by 10. *In base 10, every natural number expressible in the form 9Rnan, where the number Rn consists of n copies of the single digit 1, n>0, and an is a positive integer less than 10n and multiple of n, is a harshad number. (R. D’Amico, 2019). The number 9R3a3 = 521478, where R3 = 111, n = 3 and a3 = 3×174 = 522, is a harshad number; in fact, we have: 521478/(5+2+1+4+7+8) = 521478/27 = 19314. *Harshad numbers in base 10 form the sequence: *: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90,
100 100 or one hundred (Roman numeral: C) is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the short hundred or five score in order to differentiate the English and Germanic use of "hundred" to de ...
,
102 102 may refer to: * 102 (number), the number * AD 102, a year in the 2nd century AD * 102 BC, a year in the 2nd century BC * 102 (ambulance service), an emergency medical transport service in Uttar Pradesh, India * 102 (Clyde) Field Squadron, Royal ...
,
108 108 may refer to: * 108 (number) * AD 108, a year * 108 BC, a year * 108 (artist) (born 1978), Italian street artist * 108 (band), an American hardcore band * 108 (emergency telephone number), an emergency telephone number in several states in Ind ...
,
110 110 may refer to: *110 (number), natural number *AD 110, a year *110 BC, a year *110 film, a cartridge-based film format used in still photography *110 (MBTA bus), Massachusetts Bay Transportation Authority bus route *110 (song), 2019 song by Capi ...
,
111 111 may refer to: *111 (number) *111 BC *AD 111 *111 (emergency telephone number) *111 (Australian TV channel) * Swissair Flight 111 * ''111'' (Her Majesty & the Wolves album) * ''111'' (Željko Joksimović album) * NHS 111 *(111) a Miller index fo ...
, 112,
114 114 may refer to: *114 (number) *AD 114 *114 BC *114 (1st London) Army Engineer Regiment, Royal Engineers, an English military unit *114 (Antrim Artillery) Field Squadron, Royal Engineers, a Northern Irish military unit *114 (MBTA bus) *114 (New Je ...
,
117 117 may refer to: *117 (number) *AD 117 *117 BC *117 (emergency telephone number) *117 (MBTA bus) * 117 (TFL bus) *117 (New Jersey bus) *''117°'', a 1998 album by Izzy Stradlin *No. 117 (SPARTAN-II soldier ID), personal name John, the Master Chief ...
, 120,
126 126 may refer to: *126 (number), a natural number *AD 126, a year in the 2nd century AD *126 BC, a year in the 2nd century BC *126 film, a cartridge-based film format used in still photography * 126 (New Jersey bus) * 126 Artist-run Gallery *Interst ...
,
132 132 may refer to: *132 (number) *AD 132 *132 BC __NOTOC__ Year 132 BC was a year of the Roman calendar, pre-Julian Roman calendar. At the time it was known as the Year of the Consulship of Laenas and Rupilius (or, less frequently, year 622 ''Ab ...
,
133 133 may refer to: *133 (number) * AD 133 *133 BC *133 (song) *133 (New Jersey bus) 133 may refer to: *133 (number) * AD 133 *133 BC *133 (song) 133 may refer to: *133 (number) *AD 133 *133 BC *133 (song) *133 (New Jersey bus) 133 may refer to: * ...
,
135 135 may refer to: * 135 (number) * AD 135 * 135 BC * 135 film, better known as 35 mm film, is a format of photographic film used for still photography *135 (New Jersey bus) 135 may refer to: * 135 (number) * AD 135 * 135 BC * 135 film, better know ...
,
140 140 may refer to: * 140 (number), an integer * AD 140, a year of the Julian calendar * 140 BC, a year of the pre-Julian Roman calendar * ''140'' (video game), a 2013 platform game * Tin King stop Tin King () is an at-grade MTR Light Rail stop ...
,
144 144 may refer to: * 144 (number), the natural number following 143 and preceding 145 * AD 144, a year of the Julian calendar, in the second century AD * 144 BC, a year of the pre-Julian Roman calendar * 144 (film), ''144'' (film), a 2015 Indian com ...
,
150 150 may refer to: *150 (number), a natural number *AD 150, a year in the 2nd century AD *150 BC, a year in the 2nd century BC *150 Regiment RLC *Combined Task Force 150 See also * List of highways numbered 150 The following highways are numbered ...
,
152 Year 152 ( CLII) was a leap year starting on Friday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Glabrio and Homullus (or, less frequently, year 905 ''Ab urbe condita'' ...
, 153,
156 Year 156 ( CLVI) was a leap year starting on Wednesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Silvanus and Augurinus (or, less frequently, year 909 '' Ab urbe co ...
,
162 Year 162 ( CLXII) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. In the Roman Empire, it was known as the Year of the Consulship of Rusticus and Plautius (or, less frequently, year 915 '' Ab ...
,
171 Year 171 (Roman numerals, CLXXI) was a common year starting on Monday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Severus and Herennianus (or, less frequently, year 92 ...
, 180,
190 Year 190 (CXC) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Aurelius and Sura (or, less frequently, year 943 ''Ab urbe condita'') ...
,
192 Year 192 ( CXCII) was a leap year starting on Saturday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Aelius and Pertinax (or, less frequently, year 945 ''Ab urbe condita ...
,
195 Year 195 ( CXCV) was a common year starting on Wednesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Scrapula and Clemens (or, less frequently, year 948 ''Ab urbe cond ...
, 198,
200 __NOTOC__ Year 200 ( CC) was a leap year starting on Tuesday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Severus and Victorinus (or, less frequently, year 953 '' Ab ur ...
, ... . *All integers between zero and are -harshad numbers.


Properties

Given the divisibility test for 9, one might be tempted to generalize that all numbers divisible by 9 are also harshad numbers. But for the purpose of determining the harshadness of , the digits of can only be added up once and must be divisible by that sum; otherwise, it is not a harshad number. For example, 99 is not a harshad number, since 9 + 9 = 18, and 99 is not divisible by 18. The base number (and furthermore, its powers) will always be a harshad number in its own base, since it will be represented as "10" and 1 + 0 = 1. All numbers whose base ''b'' digit sum divides ''b''−1 are harshad numbers in base ''b''. For a prime number to also be a harshad number it must be less than or equal to the base number, otherwise the digits of the prime will add up to a number that is more than 1, but less than the prime, and will not be divisible. For example: 11 is not harshad in base 10 because the sum of its digits “11” is 1 + 1 = 2, and 11 is not divisible by 2; while in base 12 the number 11 may be represented as “Ɛ”, the sum of whose digits is also Ɛ. Since Ɛ is divisible by itself, it is harshad in base 12. Although the sequence of
factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \t ...
s starts with harshad numbers in base 10, not all factorials are harshad numbers. 432! is the first that is not. (432! has digit sum = 3897 = 32×433 in base 10, thus not dividing 432!) Smallest such that k \cdot n is a harshad number are :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 9, 3, 2, 3, 6, 1, 6, 1, 1, 5, 9, 1, 2, 6, 1, 3, 9, 1, 12, 6, 4, 3, 2, 1, 3, 3, 3, 1, 10, 1, 12, 3, 1, 5, 9, 1, 8, 1, 2, 3, 18, 1, 2, 2, 2, 9, 9, 1, 12, 6, 1, 3, 3, 2, 3, 3, 3, 1, 18, 1, 7, 3, 2, 2, 4, 2, 9, 1, ... . Smallest such that k \cdot n is not a harshad number are :11, 7, 5, 4, 3, 11, 2, 2, 11, 13, 1, 8, 1, 1, 1, 1, 1, 161, 1, 8, 5, 1, 1, 4, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 83, 1, 1, 1, 4, 1, 4, 1, 1, 11, 1, 1, 2, 1, 5, 1, 1, 1, 537, 1, 1, 1, 1, 1, 83, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 68, 1, 1, 1, 1, 1, 1, 1, 2, ... .


Other bases

The harshad numbers in base 12 are: :1, 2, 3, 4, 5, 6, 7, 8, 9, ᘔ, Ɛ, 10, 1ᘔ, 20, 29, 30, 38, 40, 47, 50, 56, 60, 65, 70, 74, 80, 83, 90, 92, ᘔ0, ᘔ1, Ɛ0, 100, 10ᘔ, 110, 115, 119, 120, 122, 128, 130, 134, 137, 146, 150, 153, 155, 164, 172, 173, 182, 191, 1ᘔ0, 1Ɛ0, 1Ɛᘔ, 200, ... where ᘔ represents ten and Ɛ represents eleven. Smallest such that k \cdot n is a base-12 harshad number are (written in base 10): :1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 10, 2, 11, 3, 4, 1, 7, 1, 12, 6, 4, 3, 11, 2, 11, 3, 1, 5, 9, 1, 12, 11, 4, 3, 11, 2, 11, 1, 4, 4, 11, 1, 16, 6, 4, 3, 11, 2, 1, 3, 11, 11, 11, 1, 12, 11, 5, 7, 9, 1, 7, 3, 3, 9, 11, 1, ... Smallest such that k \cdot n is not a base-12 harshad number are (written in base 10): :13, 7, 5, 4, 3, 3, 2, 2, 2, 2, 13, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 157, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 157, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1885, 1, 1, 1, 1, 1, 3, ... Similar to base 10, not all factorials are harshad numbers in base 12. After 7! (= 5040 = 2Ɛ00 in base 12, with digit sum 13 in base 12, and 13 does not divide 7!), 1276! is the next that is not. (1276! has digit sum = 14201 = 11×1291 in base 12, thus does not divide 1276!)


Consecutive harshad numbers


Maximal runs of consecutive harshad numbers

Cooper and Kennedy proved in 1993 that no 21 consecutive integers are all harshad numbers in base 10. They also constructed infinitely many 20-tuples of consecutive integers that are all 10-harshad numbers, the smallest of which exceeds 1044363342786. extended the Cooper and Kennedy result to show that there are 2''b'' but not 2''b'' + 1 consecutive ''b''-harshad numbers. This result was strengthened to show that there are infinitely many runs of 2''b'' consecutive ''b''-harshad numbers for ''b'' = 2 or 3 by and for arbitrary ''b'' by Brad Wilson in 1997. In binary, there are thus infinitely many runs of four consecutive harshad numbers and in
ternary Ternary (from Latin ''ternarius'') or trinary is an adjective meaning "composed of three items". It can refer to: Mathematics and logic * Ternary numeral system, a base-3 counting system ** Balanced ternary, a positional numeral system, useful ...
infinitely many runs of six. In general, such maximal sequences run from ''N''·''bk'' − ''b'' to ''N''·''bk'' + (''b'' − 1), where ''b'' is the base, ''k'' is a relatively large power, and ''N'' is a constant. Given one such suitably chosen sequence, we can convert it to a larger one as follows: * Inserting zeroes into ''N'' will not change the sequence of digital sums (just as 21, 201 and 2001 are all 10-harshad numbers). * If we insert ''n'' zeroes after the first digit, ''α'' (worth ''αbi''), we increase the value of ''N'' by ''αbi''(''bn'' − 1). * If we can ensure that ''bn'' − 1 is divisible by all digit sums in the sequence, then the divisibility by those sums is maintained. * If our initial sequence is chosen so that the digit sums are coprime to ''b'', we can solve ''bn'' = 1 modulo all those sums. * If that is not so, but the part of each digit sum not coprime to ''b'' divides ''αbi'', then divisibility is still maintained. * ''(Unproven)'' The initial sequence is so chosen. Thus our initial sequence yields an infinite set of solutions.


First runs of exactly consecutive 10-harshad numbers

The smallest naturals starting runs of ''exactly'' consecutive 10-harshad numbers (i.e., smallest such that x, x+1, \cdots, x+n-1 are harshad numbers but x-1 and x+n are not) are as follows :
style="text-align:right;" , - , , , 1 , , 2 , , 3 , , 4 , , 5 , - , , , 12 , , 20 , , 110 , , 510 , , , - , , , 6 , , 7 , , 8 , , 9 , , 10 , - , , , , , , , , , , , 1 , - , , , 11 , , 12 , , 13 , , 14 , , 15 , - , , , , , , , , , , , unknown , - , , , 16 , , 17 , , 18 , , 19 , , 20 , - , , , , , , , unknown , , unknown , , unknown , -
By the previous section, no such exists for n > 20.


Estimating the density of harshad numbers

If we let N(x) denote the number of harshad numbers \le x, then for any given \epsilon > 0, :x^ \ll N(x) \ll \frac as shown by Jean-Marie De Koninck and Nicolas Doyon; furthermore, De Koninck, Doyon and Kátai proved that :N(x)=(c+o(1))\frac, where c = (14/27) \log 10 \approx 1.1939 and the o(1) term uses
Big O notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
.


Sums of harshad numbers

Every natural number not exceeding one billion is either a harshad number or the sum of two harshad numbers. Conditional to a technical hypothesis on the zeros of certain Dedekind zeta functions, Sanna proved that there exists a positive integer k such that every natural number is the sum of at most k harshad numbers, that is, the set of harshad numbers is an
additive basis In additive number theory, an additive basis is a set S of natural numbers with the property that, for some finite number k, every natural number can be expressed as a sum of k or fewer elements of S. That is, the sumset of k copies of S consists of ...
. The number of ways that each natural number 1, 2, 3, ... can be written as sum of two harshad numbers is: :0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6, ... . The smallest number that can be written in exactly 1, 2, 3, ... ways as the sum of two harshad numbers is: :2, 4, 6, 8, 10, 51, 48, 72, 108, 126, 90, 138, 144, 120, 198, 162, 210, 216, 315, 240, 234, 306, 252, 372, 270, 546, 360, 342, 444, 414, 468, 420, 642, 450, 522, 540, 924, 612, 600, 666, 630, 888, 930, 756, 840, 882, 936, 972, 1098, 1215, 1026, 1212, 1080, ... .


Nivenmorphic numbers

A Nivenmorphic number or harshadmorphic number for a given number base is an integer such that there exists some harshad number whose digit sum is , and , written in that base, terminates written in the same base. For example, 18 is a Nivenmorphic number for base 10: 16218 is a harshad number 16218 has 18 as digit sum 18 terminates 16218 Sandro Boscaro determined that for base 10 all positive integers are Nivenmorphic numbers except 11. In fact, for an even integer ''n'' > 1, all positive integers except ''n''+1 are Nivenmorphic numbers for base ''n'', and for an odd integer ''n'' > 1, all positive integers are Nivenmorphic numbers for base ''n''. e.g. the Nivenmorphic numbers in base 12 are (all positive integers except 13). The smallest number with base 10 digit sum ''n'' and terminates ''n'' written in base 10 are: (0 if no such number exists) :1, 2, 3, 4, 5, 6, 7, 8, 9, 910, 0, 912, 11713, 6314, 915, 3616, 15317, 918, 17119, 9920, 18921, 9922, 82823, 19824, 9925, 46826, 18927, 18928, 78329, 99930, 585931, 388832, 1098933, 198934, 289835, 99936, 99937, 478838, 198939, 1999840, 2988941, 2979942, 2979943, 999944, 999945, 4698946, 4779947, 2998848, 2998849, 9999950, ...


Multiple harshad numbers

defines a multiple harshad number as a harshad number that, when divided by the sum of its digits, produces another harshad number.. He states that 6804 is "MHN-4" on the grounds that :\begin 6804/18&=378\\ 378/18&=21\\ 21/3&=7\\ 7/7&=1 \end (it is not MHN-5 since 1/1=1, but 1 is not "another" harshad number) and went on to show that 2016502858579884466176 is MHN-12. The number 10080000000000 = 1008·1010, which is smaller, is also MHN-12. In general, 1008·10''n'' is MHN-(''n''+2).


References


External links

{{Divisor classes Base-dependent integer sequences