In
mathematics, a Hadamard manifold, named after
Jacques Hadamard
Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry and partial differential equations.
Biography
The son of a tea ...
— more often called a Cartan–Hadamard manifold, after
Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry ...
— is a
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
that is
complete and
simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spa ...
and has everywhere non-positive
sectional curvature.
By
Cartan–Hadamard theorem all Cartan–Hadamard manifolds are diffeomorphic to the Euclidean space
Furthermore it follows from the
Hopf–Rinow theorem that every pairs of points in a Cartan–Hadamard manifold may be connected by a unique geodesic segment. Thus Cartan–Hadamard manifolds are some of the closest relatives of
Examples
The
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
with its usual metric is a Cartan-Hadamard manifold with constant sectional curvature equal to
Standard
-dimensional
hyperbolic space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. ...
is a Cartan-Hadamard manifold with constant sectional curvature equal to
Properties
In Cartan-Hadamard manifolds, the map
is a
covering map for all
See also
*
*
*
References
Riemannian manifolds
{{topology-stub