HOME

TheInfoList



OR:

H3K36me3 is an epigenetic modification to the DNA packaging protein
Histone H3 Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a stri ...
. It is a mark that indicates the tri- methylation at the 36th lysine residue of the histone H3 protein and often associated with gene bodies. There are diverse modifications at H3K36 and have many important biological processes. H3K36 has different acetylation and methylation states with no similarity to each other.


Nomenclature

H3K36me3 indicates trimethylation of lysine 36 on histone H3 protein subunit:


Lysine Methylation

This diagram shows the progressive methylation of a lysine residue. The tri-methylation denotes the methylation present in H3K36me3.


Understanding histone modifications

The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as
Histones In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn ar ...
. The complexes formed by the looping of the DNA are known as
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues. The carboxyl (C) terminal end of these histones contribute to histone-histone interactions, as well as histone-DNA interactions. The amino (N) terminal charged tails are the site of the post-translational modifications, such as the one seen in H3K36me3.


Mechanism and function of modification


Binding proteins

H3K36me3 can bind
chromodomain A chromodomain (''chromatin organization modifier'') is a protein structural domain of about 40–50 amino acid residues commonly found in proteins associated with the remodeling and manipulation of chromatin. The domain is highly conserved amon ...
proteins such as MSL3 hMRG15 and scEaf3. It can bind PWWP proteins such as BRPF1
DNMT3A DNA (cytosine-5)-methyltransferase 3A is an enzyme that catalyzes the transfer of methyl groups to specific CpG structures in DNA, a process called DNA methylation. The enzyme is encoded in humans by the DNMT3A gene. This enzyme is responsible f ...
, HDGF2 and
Tudor domain In molecular biology, a Tudor domain is a conserved protein structural domain originally identified in the Tudor protein encoded in Drosophila. The Tudor gene was found in a Drosophila screen for maternal factors that regulate embryonic development ...
s such as PHF19 and PHF1.


DNA repair

H3K36me3 is required for
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
al repair of DNA damage such as double-strand breaks. The trimethylation is catalyzed by
SETD2 SET domain containing 2 is an enzyme that in humans is encoded by the ''SETD2'' gene. Function SETD2 protein is a histone methyltransferase that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active c ...
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ross ...
.


Other roles

H3K36me3 acts as a mark for
HDAC Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around h ...
s to bind and deacetylate the histone which would prevent run-away transcription. It is associated with both facultative and constitutive heterochromatin.


Relationship with other modifications

H3K36me3 might define exons. Nucleosomes in the exons have more histone modifications such as H3K79, H4K20, and especially H3K36me3.


Epigenetic implications

The post-translational modification of histone tails by either histone modifying complexes or chromatin remodelling complexes are interpreted by the cell and lead to complex, combinatorial transcriptional output. It is thought that a Histone code dictates the expression of genes by a complex interaction between the histones in a particular region. The current understanding and interpretation of histones comes from two large scale projects:
ENCODE The Encyclopedia of DNA Elements (ENCODE) is a public research project which aims to identify functional elements in the human genome. ENCODE also supports further biomedical research by "generating community resources of genomics data, software ...
and the Epigenomic roadmap. The purpose of the epigenomic study was to investigate epigenetic changes across the entire genome. This led to chromatin states which define genomic regions by grouping the interactions of different proteins and/or histone modifications together. Chromatin states were investigated in Drosophila cells by looking at the binding location of proteins in the genome. Use of
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated prot ...
revealed regions in the genome characterised by different banding. Different developmental stages were profiled in Drosophila as well, an emphasis was placed on histone modification relevance. A look in to the data obtained led to the definition of chromatin states based on histone modifications. Certain modifications were mapped and enrichment was seen to localize in certain genomic regions. Five core histone modifications were found with each respective one being linked to various cell functions. *
H3K4me3 H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addi ...
-promoters *
H3K4me1 H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers. Nomenclature H3K4me1 i ...
- primed enhancers * H3K36me3-gene bodies *
H3K27me3 H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein. This tri-methylation is associated with the downregulation of nearby genes via t ...
-polycomb repression *
H3K9me3 H3K9me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 9th lysine residue of the histone H3 protein and is often associated with heterochromatin. Nomenclature H3K9me3 ...
-heterochromatin The human genome was annotated with chromatin states. These annotated states can be used as new ways to annotate a genome independently of the underlying genome sequence. This independence from the DNA sequence enforces the epigenetic nature of histone modifications. Chromatin states are also useful in identifying regulatory elements that have no defined sequence, such as enhancers. This additional level of annotation allows for a deeper understanding of cell specific gene regulation.


Clinical significance

This histone methylation is responsible for maintaining gene expression stability. It is important throughout aging and has an impact on longevity. Genes that change their expression during aging have much lower levels of H3K36me3 in their gene bodies. There is reduced levels of H3K36me3 and H3K79me2 at the upstream GAA region of the
FXN Frataxin is a protein that in humans is encoded by the FXN gene. It is located in the mitochondrion and Frataxin mRNA is mostly expressed in tissues with a high metabolic rate. The function of frataxin is not clear but it is involved in assemb ...
, indicative of a defect of transcription elongation in
Friedreich's ataxia Friedreich's ataxia (FRDA or FA) is an autosomal-recessive genetic disease that causes difficulty walking, a loss of sensation in the arms and legs, and impaired speech that worsens over time. Symptoms generally start between 5 and 20 year ...
.


Methods

The histone mark H3K36me3 can be detected in a variety of ways: 1. Chromatin Immunoprecipitation Sequencing (
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated prot ...
) measures the amount of DNA enrichment once bound to a targeted protein and immunoprecipitated. It results in good optimization and is used in vivo to reveal DNA-protein binding occurring in cells. ChIP-Seq can be used to identify and quantify various DNA fragments for different histone modifications along a genomic region. 2. Micrococcal Nuclease sequencing (MNase-seq) is used to investigate regions that are bound by well positioned nucleosomes. Use of the micrococcal nuclease enzyme is employed to identify nucleosome positioning. Well positioned nucleosomes are seen to have enrichment of sequences. 3. Assay for transposase accessible chromatin sequencing (ATAC-seq) is used to look in to regions that are nucleosome free (open chromatin). It uses hyperactive
Tn5 transposon A transposase is any of a class of enzymes capable of binding to the end of a transposon and catalysing its movement to another part of a genome, typically by a cut-and-paste mechanism or a replicative mechanism, in a process known as transposition ...
to highlight nucleosome localisation.


See also

* Histone methylation * Histone methyltransferase *
Methyllysine Methyllysine is derivative of the amino acid residue lysine where the sidechain ammonium group has been methylated one or more times. Such methylated lysines play an important role in epigenetics; the methylation of specific lysines of certain h ...


References

{{reflist Epigenetics Post-translational modification