GrpE
   HOME

TheInfoList



OR:

GrpE (''Gro-P'' like protein E) is a
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
l
nucleotide exchange factor Nucleotide exchange factors (NEFs) are proteins that stimulate the exchange (replacement) of nucleoside diphosphates for nucleoside triphosphates bound to other proteins. Function Many cellular proteins cleave (hydrolyze) nucleoside triphosphates ...
that is important for regulation of
protein folding Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reproduci ...
machinery, as well as the
heat shock response The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. In a norma ...
. It is a heat-inducible protein and during stress it prevents unfolded proteins from accumulating in the cytoplasm. Accumulation of unfolded proteins in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. The ...
can lead to cell death.


Discovery

GrpE is a nucleotide exchange factor that was first discovered by researchers in 1977 as a protein necessary to propagate bacteriophage λ, a virus that infects bacteria by highjacking the bacteria's own replication machinery, in ''Escherichia coli''. By using a genetic screen, researchers knocked out certain genes in E''. coli'' and then tested whether the bacteria was able to replicate, GrpE was found to be crucial to propagation. Since that time, GrpE has been identified in all bacteria and in Archaea where
DnaK The 70 kilodalton heat shock proteins (Hsp70s or DnaK) are a family of conserved ubiquitously expressed heat shock proteins. Proteins with similar structure exist in virtually all living organisms. Intracellularly localized Hsp70s are an importa ...
and
DnaJ In molecular biology, chaperone DnaJ, also known as Hsp40 (heat shock protein 40 kD), is a molecular chaperone protein. It is expressed in a wide variety of organisms from bacteria to humans. Function Molecular chaperones are a diverse family o ...
are present. The
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
of GrpE was determined in 1997 at 2.8 Angstrom and identified GrpE as a homodimer that binds DnaK, a heat-shock protein involved in ''de novo'' protein folding. GrpE's structure determination was important because it demonstrated the interaction of nucleotide exchange factors at the nucleotide binding domain of DnaK.


Structure


Functional domains

The GrpE homodimer has three distinct domains: *
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
disordered regions — Amino acids 1-33 in the N-terminal domain can compete for binding to the substrate binding cleft of DnaK. Amino acids 34-39 have not been visualized because they are either too disordered or too unstructured to be crystallized. *
α-helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
— There are four α-helices, two short and two long, these are stalk-like and parallel to each other. These helices come together to form a helical bundle however, there is no superhelical twisting due to the heptad-hendecad (7-11-7-11) spacing of hydrophobic residues in these helices. Portions of this helical bundle are able to bind to Domain IIB of DnaK. These helices also act as thermosensors. *
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
β-sheets The beta sheet, (β-sheet) (also β-pleated sheet) is a common motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a gen ...
— There are two compact β-sheets which stick out from the helices like arms. The β-sheet proximal to DnaK interacts with its ATP binding cleft directly by inserting itself into the cleft and causing a conformational shift in Domain IIB causing the release of ADP. The distal β-sheet does not interact with DnaK.


Binding induces a conformational change

Binding of GrpE's proximal β-sheet to Domain IIB of DnaK causes a 14° outward rotation of the nucleotide binding cleft, disrupting the binding of three side chains to the adenine and ribose rings of the nucleotide. This conformational change shifts DnaK from a closed to an open conformation and allows the release of ADP from the binding cleft.


Function


Nucleotide exchange factor

Nucleotide exchange factors are proteins that catalyze the release of
adenosine diphosphate Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbon ...
(ADP) to facilitate binding of
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of ...
(ATP). ATP has three phosphate groups and the removal of one of the phosphate groups releases energy which is used to fuel a reaction. This removal of a phosphate group reduces ATP to ADP. GrpE is a nucleotide exchange factor that causes the release of bound ADP from DnaK, a heat shock protein important in ''de novo'' protein folding. DnaK, in its open conformation, binds ATP with low affinity and has a fast exchange rate for unfolded proteins. Once DnaJ, a co-chaperone, brings an unfolded protein to DnaK ATP is hydrolyzed to ADP to facilitate folding of the protein. At this point, the DnaK•ADP complex is in a stable conformation and requires GrpE to bind DnaK, change its conformation, and release ADP from the N-terminal ATPase domain of DnaK. Once ADP is released from the cycle is able to continue.


Kinetics

The interaction between GrpE and the nucleotide binding cleft of DnaK is strong with a Kd between 1 nM (assessed during active conformation using transient kinetics) and a Kd of 30 nM (based on inactive conformation through
surface plasmon resonance Surface plasmon resonance (SPR) is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material in a particle stimulated by incident light. SPR is the basis of many standard tools for measu ...
). This low dissociation constant indicates that GrpE readily binds to DnaK. Binding of GrpE to DnaK•ADP greatly reduces the affinity of ADP for DnaK by 200-fold and accelerates the rate of nucleotide release by 5000-fold. This process facilitates the ''de novo'' folding of unfolded protein by DnaK.


Protein Folding

GrpE also has an important role in substrate release from DnaK. The disordered N-terminal region of GrpE competes for binding to DnaK's substrate binding cleft. Researchers mutated GrpE to identify the function of its structural domains. Mutated GrpE, without its disordered N-terminal domain, is still able to bind to DnaK's nucleotide binding cleft and induce a conformational change however, the substrate will not be released.


Thermosensor

GrpE is a nucleotide exchange factor for DnaK, a heat shock protein, its activity is downregulated with increasing temperature. In biology, reversible unfolding of α-helices begins at 35 °C with a midpoint Tm of 50 °C, this unfolding affects the structural integrity of GrpE and prevents binding of GrpE to the nucleotide binding cleft of DnaK This has an important physiological role to limit the substrate cycling and subsequent ATP expenditure during heat stress. The thermal regulation of DnaK slows protein folding and prevents unfolded proteins from accumulating in the cytoplasm at high temperatures.


Bacteriophage λ replication

GrpE was first identified for its role in phage λ replication. GrpE that has been mutated so that it is nonfunctional prevents phage λ replication ''in vivo'' and greatly decreases replication ''in vitro''. ''In vitro'' overexpression of DnaK can recover phage λ replication without GrpE. GrpE's pivotal role in phage λ replication is at the origin of replication, after assembly of DnaB and other replication factors, GrpE facilitates bidirectional DNA unwinding through interaction with DnaK.


Regulation


Transcription

In the Archaea
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
, the
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
for GrpE is located upstream of the gene for DnaK which, is upstream of the gene for DnaJ. Out of these three proteins, only the
promoter region In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of i ...
of GrpE has a complete TATA binding box and upstream heat-responsive binding site. This suggests that, in Archaea, these three genes are transcribed at the same time. In ''E. coli,'' GrpE's transcription is regulated by binding of the heat-shock specific subunit of
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that synthesizes RNA from a DNA template. Using the enzyme helicase, RNAP locally opens the ...
, σ32. Under physiological conditions, σ32 is kept at low levels through inactivation by interacting with DnaK and DnaJ, then subsequent degradation by
protease A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes (increases reaction rate or "speeds up") proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the ...
s. However, during heat shock these proteins are unable to interact with σ32 and target it for degradation. Therefore, during heat shock, σ32 binds to the promoter region of heat shock proteins and causes rapid induction of these genes.


Other biological systems


Eukaryote homologues

In ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been o ...
'', the GrpE homologue, Mge1, is found in
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
. Mge1 is a nucleotide exchange factor important for shuttling proteins across mitochondrial membranes and in protein folding, it interacts with a yeast homologue of DnaK. Mge1 has a similar role as a thermosensor. Yeast have additional GrpE homologues including Sil1p and Fes1p. In humans, mitochondrial organelles have GrpE-like 1 (GRPEL1) protein. In eukaryotic cells, there any many additional eukaryotic GrpE homologues. Members of the BAG family specifically,
BAG1 BAG family molecular chaperone regulator 1 is a protein that in humans is encoded by the ''BAG1'' gene. Function The oncogene BCL2 is a membrane protein that blocks a step in a pathway leading to apoptosis or programmed cell death. The protein ...
are the main nucleotide exchange factors for heat shock protein 70kDa (Hsp70), which is the
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
equivalent of DnaK. Other nucleotide exchange factors that interact with heat-shock proteins in eukaryotes include, Sse1p, Sil1p, Hip, and HspBP1. These eukaryotic nucleotide exchange factors are all heat-shock inducible meaning that they serve a similar function as GrpE, to protect the cell from unfolded protein aggregation. These nucleotide exchange factors always interact with subdomain IIB of the nucleotide binding cleft of their respective heat-shock proteins. The binding of the nucleotide exchange factor to a nucleotide binding cleft and the shift to an open conformation is conserved between
prokaryote A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
s and eukaryotes.


Plant homologues

In plants, GrpE homologues, CGE1 and CGE2, are found in
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s. CGE1 has two splice isoforms that differ in 6 amino acids in the N-terminal, with isoform CGE1b being 6 nucleotides longer than CGE1a. This N-terminal domain is important in substrate release through competitive binding to the heat-shock protein. All of these plant nucleotide exchange factors interact directly with the cpHsc70, the plant homologue of DnaK. They are heat-inducible however, at 43 °C, they are not as effective as GrpE at protecting the cell from unfolded protein accumulation.


Role in disease


Bacterial pathogenesis

Enterococci are bacteria that are commonly found in the gastrointestinal tract of animals, including humans. These bacteria can form a
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular ...
, which is a layer of bacteria attached to a surface. Enterococcal biofilm is prevalent in hospital and surgical settings, it is responsible for 25% of catheter-related infections, is found in 50% of root-filled teeth with apical periodontitis, and can be isolated from other wounds. GrpE is found in the genome of '' Enterococcus faecilis'' and ''
Enterococcus faecium ''Enterococcus faecium'' is a Gram-positive, gamma-hemolytic or non- hemolytic bacterium in the genus ''Enterococcus''. It can be commensal (innocuous, coexisting organism) in the gastrointestinal tract of humans and animals, but it may also be ...
'' and is critical for enterococcal biofilm attachment to
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a ...
tubes, a plastic polymer commonly used in hospital settings. Group A ''Streptococcus pyogenes'' is a bacterium that can lead to common infections, including
strep throat Streptococcal pharyngitis, also known as streptococcal sore throat (strep throat), is pharyngitis (an infection of the pharynx, the back of the throat) caused by ''Streptococcus pyogenes'' a gram-positive, group A streptococcus. Common symptom ...
and
impetigo Impetigo is a bacterial infection that involves the superficial skin. The most common presentation is yellowish crusts on the face, arms, or legs. Less commonly there may be large blisters which affect the groin or armpits. The lesions may be pa ...
, but is also responsible for life-threatening infections. During infection, GrpE helps ''streptococcus'' bacteria adhere to pharyngeal
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellula ...
. GrpE in ''Streptococcus'' binds to
endogenous Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, es ...
proline-rich proteins in saliva, allowing adhesion of the bacteria to the host.


References

{{Reflist Heat shock proteins