Geotropism
   HOME

TheInfoList



OR:

Gravitropism (also known as geotropism) is a coordinated process of differential growth by a
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclud ...
in response to
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
pulling on it. It also occurs in
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many
lower Lower may refer to: *Lower (surname) *Lower Township, New Jersey *Lower Receiver (firearms) *Lower Wick Gloucestershire, England See also *Nizhny Nizhny (russian: Ни́жний; masculine), Nizhnyaya (; feminine), or Nizhneye (russian: Ни́ ...
plants as well as other organisms.
Charles Darwin Charles Robert Darwin ( ; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended fr ...
was one of the first to scientifically document that
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
s show ''positive gravitropism'' and stems show ''negative gravitropism''. That is,
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
s grow in the direction of gravitational pull (i.e., downward) and stems grow in the opposite direction (i.e., upwards). This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the
stem Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
begin to display negative gravitropism, growing (biologists say, turning; see
tropism A tropism is a biological phenomenon, indicating growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. In tropisms, this response is dependent on the direction of the stimulus (as oppose ...
) upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the
Cholodny–Went model In botany, the Cholodny–Went model, proposed in 1927, is an early model describing tropism in emerging shoots of monocotyledons, including the tendencies for the shoot to grow towards the light ( phototropism) and the roots to grow downward ( ...
which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.


In roots

Root growth occurs by division of stem cells in the root
meristem The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells conti ...
located in the tip of the root, and the subsequent asymmetric expansion of cells in a shoot-ward region to the tip known as the elongation zone. Differential growth during tropisms mainly involves changes in cell expansion versus changes in cell division, although a role for cell division in tropic growth has not been formally ruled out. Gravity is sensed in the root tip and this information must then be relayed to the elongation zone so as to maintain growth direction and mount effective growth responses to changes in orientation to and continue to grow its roots in the same direction as gravity. Abundant evidence demonstrates that roots bend in response to gravity due to a regulated movement of the
plant hormone Plant hormone (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, pa ...
auxin Auxins (plural of auxin ) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essenti ...
known as
polar auxin transport Polar auxin transport is the regulated transport of the plant hormone auxin in plants. It is an active process, the hormone is transported in cell-to-cell manner and one of the main features of the transport is its asymmetry and directionality ( p ...
. This was described in the 1920s in the Cholodny-Went model. The model was independently proposed by the Russian scientist N. Cholodny of the
University of Kyiv Kyiv University or Shevchenko University or officially the Taras Shevchenko National University of Kyiv ( uk, Київський національний університет імені Тараса Шевченка), colloquially known as KNU ...
in 1927 and by
Frits Went Friedrich August Ferdinand Christian Went ForMemRS (June 18, 1863 – July 24, 1935) was a Dutch botanist. Went was born in Amsterdam. He was professor of botany and director of the Botanical Garden at the University of Utrecht. His eldest ...
of the
California Institute of Technology The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
in 1928, both based on work they had done in 1926. Auxin exists in nearly every organ and tissue of a plant, but it has been reoriented in the gravity field, can initiate differential growth resulting in root curvature. Experiments show that auxin distribution is characterized by a fast movement of auxin to the lower side of the root in response to a gravity stimulus at a 90° degree angle or more. However, once the root tip reaches a 40° angle to the horizontal of the stimulus, auxin distribution quickly shifts to a more symmetrical arrangement. This behavior is described as a "tipping point" mechanism for auxin transport in response to a gravitational stimulus. ]


In shoots

Gravitropism is an integral part of plant growth, orienting its position to maximize contact with sunlight, as well as ensuring that the roots are growing in the correct direction. Growth due to gravitropism is mediated by changes in concentration of the plant hormone auxin within plant cells. As plants mature, gravitropism continues to guide growth and development along with phototropism. While amyloplasts continue to guide plants in the right direction, plant organs and function rely on phototropic responses to ensure that the leaves are receiving enough light to perform basic functions such as photosynthesis. In complete darkness, mature plants have little to no sense of gravity, unlike seedlings that can still orient themselves to have the shoots grow upward until light is reached when development can begin. Differential sensitivity to auxin helps explain Darwin's original observation that stems and roots respond in the opposite way to the forces of gravity. In both roots and stems, auxin accumulates towards the gravity vector on the lower side. In roots, this results in the inhibition of cell expansion on the lower side and the concomitant curvature of the roots towards gravity (positive gravitropism). In stems, the auxin also accumulates on the lower side, however in this tissue it increases cell expansion and results in the shoot curving up (negative gravitropism). A recent study showed that for gravitropism to occur in shoots, a lot of an inclination, instead of a weak gravitational force, is necessary. This finding sets aside gravity sensing mechanisms that would rely on detecting the pressure of the weight of statoliths.


In fruit

A few species of fruit exhibit negative geotropism. Bananas are one well-known example. Once the canopy that covers the fruit dries, the bananas will begin to curve upwards, towards sunlight, in what is known as
phototropism Phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hor ...
. The specific chemical that initiates the upward curvature is a phytohormone in the banana called
Auxin Auxins (plural of auxin ) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essenti ...
. When the banana is first exposed to sunlight after the leaf canopy dries, one face of the fruit is shaded. On exposure to sunlight, auxin in the banana migrates from the sunlight side to the shaded side. Since auxin is a powerful plant growth hormone, the increased concentration promotes cell division and causes the plant cells on the shaded side to grow. This asymmetrical distribution of auxin is responsible for the upward curvature of the banana.


Gravity-sensing mechanisms


Statoliths

Plants possess the ability to sense gravity in several ways, one of which is through statoliths. Statoliths are dense
amyloplasts Amyloplasts are a type of plastid, double-enveloped organelles in plant cells that are involved in various biological pathways. Amyloplasts are specifically a type of leucoplast, a subcategory for colorless, non-pigment-containing plastids. Amylopl ...
, organelles that synthesize and store starch involved in the perception of gravity by the plant (gravitropism), that collect in specialized cells called statocytes. Statocytes are located in the starch parenchyma cells near vascular tissues in the shoots and in the columella in the caps of the roots. These specialized amyloplasts are denser than the cytoplasm and can sediment according to the gravity vector. The statoliths are enmeshed in a web of actin and it is thought that their sedimentation transmits the gravitropic signal by activating mechanosensitive channels. The gravitropic signal then leads to the reorientation of
auxin Auxins (plural of auxin ) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essenti ...
efflux carriers and subsequent redistribution of auxin streams in the root cap and root as a whole. Auxin moves toward higher concentrations on the bottom side of the root and suppresses elongation. The asymmetric distribution of auxin leads to differential growth of the root tissues, causing the root to curve and follow the gravity stimuli. Statoliths are also found in the endodermic layer of the
hypocotyl The hypocotyl (short for "hypocotyledonous stem", meaning "below seed leaf") is the stem of a germinating seedling, found below the cotyledons (seed leaves) and above the radicle ( root). Eudicots As the plant embryo grows at germination, it se ...
, stem, and inflorescence stock. The redistribution of auxin causes increased growth on the lower side of the shoot so that it orients in a direction opposite that of the gravity stimuli.


Modulation by phytochrome

Phytochrome Phytochromes are a class of photoreceptor in plants, bacteria and fungi used to detect light. They are sensitive to light in the red and far-red region of the visible spectrum and can be classed as either Type I, which are activated by far-re ...
s are red and far-red photoreceptors that help induce changes in certain aspects of plant development. Apart being itself the tropic factor (
phototropism Phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hor ...
), light may also suppress the gravitropic reaction. In seedlings, red and far-red light both inhibit negative gravitropism in seedling hypocotyls (the shoot area below the
cotyledon A cotyledon (; ; ; , gen. (), ) is a significant part of the embryo within the seed of a plant, and is defined as "the embryonic leaf in seed-bearing plants, one or more of which are the first to appear from a germinating seed." The numb ...
s) causing growth in random directions. However, the hypocotyls readily orient towards blue light. This process may be caused by phytochrome disrupting the formation of starch-filled endodermal amyloplasts and stimulating their conversion to other plastid types, such as chloroplasts or etiolaplasts.


Compensation

Bending
mushroom A mushroom or toadstool is the fleshy, spore-bearing fruiting body of a fungus, typically produced above ground, on soil, or on its food source. ''Toadstool'' generally denotes one poisonous to humans. The standard for the name "mushroom" is t ...
stems follow some regularities that are not common in plants. After turning into horizontal the normal vertical orientation the apical part (region C in the figure below) starts to straighten. Finally this part gets straight again, and the curvature concentrates near the base of the mushroom. This effect is called ''compensation'' (or sometimes, ''autotropism''). The exact reason of such behavior is unclear, and at least two hypotheses exist. * The hypothesis of plagiogravitropic reaction supposes some mechanism that sets the optimal orientation angle other than 90 degrees (vertical). The actual optimal angle is a multi-parameter function, depending on time, the current reorientation angle and from the distance to the base of the fungi. The
mathematical model A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, ...
, written following this suggestion, can simulate bending from the horizontal into vertical position but fails to imitate realistic behavior when bending from the arbitrary reorientation angle (with unchanged model parameters). * The alternative model supposes some “straightening signal”, proportional to the local curvature. When the tip angle approaches 30° this signal overcomes the bending signal, caused by reorientation, straightening resulting. Both models fit the initial data well, but the latter was also able to predict bending from various reorientation angles. Compensation is less obvious in plants, but in some cases it can be observed combining exact measurements with mathematical models. The more sensitive roots are stimulated by lower levels of auxin; higher levels of auxin in lower halves stimulate less growth, resulting in downward curvature (positive gravitropism).


Gravitropic mutants

Mutants with altered responses to gravity have been isolated in several plant species including ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' (one of the genetic model systems used for plant research). These mutants have alterations in either negative gravitropism in hypocotyls and/or shoots, or positive gravitropism in roots, or both. Mutants have been identified with varying effects on the gravitropic responses in each organ, including mutants which nearly eliminate gravitropic growth, and those whose effects are weak or conditional. In the same way that gravity has an effect on winding and circumnutating, thus aspects of morphogenesis have defects on the mutant. Once a mutant has been identified, it can be studied to determine the nature of the defect (the particular difference(s) it has compared to the non-mutant 'wildtype'). This can provide information about the function of the altered gene, and often about the process under study. In addition the mutated gene can be identified, and thus something about its function inferred from the mutant phenotype. Gravitropic mutants have been identified that affect starch accumulation, such as those affecting the ''PGM1'' (which encodes the enzyme
phosphoglucomutase Phosphoglucomutase () is an enzyme that transfers a phosphate group on an α-D-glucose monomer from the 1 to the 6 position in the forward direction or the 6 to the 1 position in the reverse direction. More precisely, it facilitates the interconve ...
) gene in ''Arabidopsis'', causing plastids – the presumptive statoliths – to be less dense and, in support of the starch-statolith hypothesis, less sensitive to gravity. Other examples of gravitropic mutants include those affecting the transport or response to the hormone auxin. In addition to the information about gravitropism which such auxin-transport or auxin-response mutants provide, they have been instrumental in identifying the mechanisms governing the transport and cellular action of auxin as well as its effects on growth. There are also several cultivated plants that display altered gravitropism compared to other species or to other varieties within their own species. Some are trees that have a weeping or ''pendulate'' growth
habit A habit (or wont as a humorous and formal term) is a routine of behavior that is repeated regularly and tends to occur subconsciously.
; the branches still respond to gravity, but with a positive response, rather than the normal negative response. Others are the ''lazy'' (i.e. ageotropic or agravitropic) varieties of corn (''
Zea mays Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
'') and varieties of rice, barley and tomatoes, whose shoots grow along the ground.


See also

*
Amyloplast Amyloplasts are a type of plastid, double-enveloped organelles in plant cells that are involved in various biological pathways. Amyloplasts are specifically a type of leucoplast, a subcategory for colorless, non-pigment-containing plastids. Amylop ...
– starch organelle involved in sensing gravitropism *
Astrobotany Astrobotany is an applied sub-discipline of botany that is the study of plants in space environments. It is a branch of astrobiology and botany. It has been a subject of study that plants may be grown in outer space typically in a weightless but ...
– the field of science concerned with plants in a spaceflight environment *
Clinostat A clinostat is a device which uses rotation to negate the effects of gravitational pull on plant growth (gravitropism) and development ( gravimorphism). It has also been used to study the effects of microgravity on cell cultures, animal embryo ...
– a device used to the effects of gravitational pull *
Random positioning machine A random positioning machine, or RPM, rotates biological samples along two independent axes to change their orientation in space in complex ways and so eliminate the effect of gravity.Jack J.W.A. van Loon (2007). Some history and use of the random ...
– a device used to negate the effects of gravitational pull *
Free fall machine The free fall machine (FFM) is designed to permit the development of small biological sample such as cell cultures with a simulated effect of micro-gravity, under free fall conditions.Schwarzenberg M, Pippia P, Meloni MA, Cossu G, Cogoli-Greuter M ...
– a device used to negate the effects of gravitational pull *
Large diameter centrifuge The large diameter centrifuge, or LDC, is any centrifuge extending several meters, which can rotate samples to change their acceleration in space to enhance the effect of gravity. Large diameter centrifuges are used to understand the effect of Hyp ...
– a device used to create a hyper-gravity pull *
Prolonged sine The law of the prolonged sine was observed when measuring strength of the reaction of the plant stems and roots in response to turning from their usual vertical orientation. Such organisms maintained their usual vertical growth, and, if turned, s ...
– reaction of plants to turning from their usual vertical orientation


References

{{Commons category, Gravitropism Tropism Auxin action Articles containing video clips