Precession is a change in the
orientation
Orientation may refer to:
Positioning in physical space
* Map orientation, the relationship between directions on a map and compass directions
* Orientation (housing), the position of a building with respect to the sun, a concept in building de ...
of the rotational axis of a
rotating
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
body. In an appropriate
reference frame
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale are specified by a set of reference point ...
it can be defined as a change in the first
Euler angle
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189–207 (E478PDF/ref>
The ...
, whereas the third Euler angle defines the
rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called ''
nutation
Nutation () is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame ...
''. In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, there are two types of precession:
torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
-free and torque-induced.
In astronomy, ''precession'' refers to any of several slow changes in an astronomical body's rotational or orbital parameters. An important example is the steady change in the orientation of the axis of rotation of the
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, known as the
precession of the equinoxes
In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particu ...
.
Torque-free
Torque-free precession implies that no external moment (torque) is applied to the body. In torque-free precession, the
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
is a constant, but the
angular velocity
In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
vector changes orientation with time. What makes this possible is a time-varying
moment of inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
, or more precisely, a time-varying
inertia matrix. The inertia matrix is composed of the moments of inertia of a body calculated with respect to separate
coordinate axes
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
(e.g. , , ). If an object is asymmetric about its principal axis of rotation, the moment of inertia with respect to each coordinate direction will change with time, while preserving angular momentum. The result is that the
component
Circuit Component may refer to:
•Are devices that perform functions when they are connected in a circuit.
In engineering, science, and technology Generic systems
*System components, an entity with discrete structure, such as an assemb ...
of the angular velocities of the body about each axis will vary inversely with each axis' moment of inertia.
The torque-free precession rate of an object with an axis of symmetry, such as a disk, spinning about an axis not aligned with that axis of symmetry can be calculated as follows:
where is the precession rate, is the spin rate about the axis of symmetry, is the moment of inertia about the axis of symmetry, is moment of inertia about either of the other two equal perpendicular principal axes, and is the angle between the moment of inertia direction and the symmetry axis.
When an object is not perfectly
solid
Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
, internal
vortices
In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
will tend to damp torque-free precession, and the rotation axis will align itself with one of the inertia axes of the body.
For a generic solid object without any axis of symmetry, the evolution of the object's orientation, represented (for example) by a rotation matrix that transforms internal to external coordinates, may be numerically simulated. Given the object's fixed internal
moment of inertia tensor
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular accelera ...
and fixed external angular momentum , the instantaneous angular velocity is
Precession occurs by repeatedly recalculating and applying a small
rotation vector
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
for the short time ; e.g.:
for the
skew-symmetric matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition
In terms of the entries of the matrix, if a_ ...
. The errors induced by finite time steps tend to increase the rotational kinetic energy:
this unphysical tendency can be counteracted by repeatedly applying a small rotation vector perpendicular to both and , noting that
Torque-induced
Torque-induced precession (gyroscopic precession) is the phenomenon in which the
axis
An axis (plural ''axes'') is an imaginary line around which an object rotates or is symmetrical. Axis may also refer to:
Mathematics
* Axis of rotation: see rotation around a fixed axis
* Axis (mathematics), a designator for a Cartesian-coordinat ...
of a spinning object (e.g., a
gyroscope
A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rota ...
) describes a
cone
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex.
A cone is formed by a set of line segments, half-lines, or lines con ...
in space when an external
torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
is applied to it. The phenomenon is commonly seen in a
spinning toy top, but all rotating objects can undergo precession. If the
speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quanti ...
of the rotation and the
magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (mathematics), the relative size of an object
*Norm (mathematics), a term for the size or length of a vector
*Order of ...
of the external torque are constant, the spin axis will move at
right angle
In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s to the
direction that would intuitively result from the external torque. In the case of a toy top, its weight is acting downwards from its
center of mass
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
and the
normal force
In mechanics, the normal force F_n is the component of a contact force that is perpendicular to the surface that an object contacts, as in Figure 1. In this instance ''normal'' is used in the geometric sense and means perpendicular, as oppose ...
(reaction) of the ground is pushing up on it at the point of contact with the support. These two opposite forces produce a torque which causes the top to precess.
The device depicted on the right (or above on mobile devices) is
gimbal
A gimbal is a pivoted support that permits rotation of an object about an axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of ...
mounted. From inside to outside there are three axes of rotation: the hub of the wheel, the gimbal axis, and the vertical pivot.
To distinguish between the two horizontal axes, rotation around the wheel hub will be called ''spinning'', and rotation around the gimbal axis will be called ''pitching''. Rotation around the vertical pivot axis is called ''rotation''.
First, imagine that the entire device is rotating around the (vertical) pivot axis. Then, spinning of the wheel (around the wheelhub) is added. Imagine the gimbal axis to be locked, so that the wheel cannot pitch. The gimbal axis has sensors, that measure whether there is a
torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
around the gimbal axis.
In the picture, a section of the wheel has been named . At the depicted moment in time, section is at the
perimeter
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimeter has several pract ...
of the rotating motion around the (vertical) pivot axis. Section , therefore, has a lot of angular rotating
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
with respect to the rotation around the pivot axis, and as is forced closer to the pivot axis of the rotation (by the wheel spinning further), because of the
Coriolis effect
In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the ...
, with respect to the vertical pivot axis, tends to move in the direction of the top-left arrow in the diagram (shown at 45°) in the direction of rotation around the pivot axis.
Section of the wheel is moving away from the pivot axis, and so a force (again, a Coriolis force) acts in the same direction as in the case of . Note that both arrows point in the same direction.
The same reasoning applies for the bottom half of the wheel, but there the arrows point in the opposite direction to that of the top arrows. Combined over the entire wheel, there is a torque around the gimbal axis when some spinning is added to rotation around a vertical axis.
It is important to note that the torque around the gimbal axis arises without any delay; the response is instantaneous.
In the discussion above, the setup was kept unchanging by preventing pitching around the gimbal axis. In the case of a spinning toy top, when the spinning top starts tilting, gravity exerts a torque. However, instead of rolling over, the spinning top just pitches a little. This pitching motion reorients the spinning top with respect to the torque that is being exerted. The result is that the torque exerted by gravity – via the pitching motion – elicits gyroscopic precession (which in turn yields a counter torque against the gravity torque) rather than causing the spinning top to fall to its side.
Precession or gyroscopic considerations have an effect on
bicycle
A bicycle, also called a pedal cycle, bike or cycle, is a human-powered or motor-powered assisted, pedal-driven, single-track vehicle, having two wheels attached to a frame, one behind the other. A is called a cyclist, or bicyclist.
Bic ...
performance at high speed. Precession is also the mechanism behind
gyrocompass
A gyrocompass is a type of non-magnetic compass which is based on a fast-spinning disc and the rotation of the Earth (or another planetary body if used elsewhere in the universe) to find geographical direction automatically. The use of a gyroc ...
es.
Classical (Newtonian)
Precession is the change of
angular velocity
In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
and
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
produced by a torque. The general equation that relates the torque to the rate of change of angular momentum is:
where
and
are the torque and angular momentum vectors respectively.
Due to the way the torque vectors are defined, it is a vector that is perpendicular to the plane of the forces that create it. Thus it may be seen that the angular momentum vector will change perpendicular to those forces. Depending on how the forces are created, they will often rotate with the angular momentum vector, and then circular precession is created.
Under these circumstances the angular velocity of precession is given by:
:
where is the
moment of inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
, is the angular velocity of spin about the spin axis, is the mass, is the acceleration due to gravity, is the angle between the spin axis and the axis of precession and is the distance between the center of mass and the pivot. The torque vector originates at the center of mass. Using , we find that the
period
Period may refer to:
Common uses
* Era, a length or span of time
* Full stop (or period), a punctuation mark
Arts, entertainment, and media
* Period (music), a concept in musical composition
* Periodic sentence (or rhetorical period), a concept ...
of precession is given by:
Where is the
moment of inertia
The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
, is the period of spin about the spin axis, and is the
torque
In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
. In general, the problem is more complicated than this, however.
Relativistic (Einsteinian)
The special and general theories of
relativity give three types of corrections to the Newtonian precession, of a gyroscope near a large mass such as Earth, described above. They are:
*
Thomas precession
In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a pa ...
, a special-relativistic correction accounting for an object (such as a gyroscope) being accelerated along a curved path.
*
de Sitter precession
The geodetic effect (also known as geodetic precession, de Sitter precession or de Sitter effect) represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, ...
, a general-relativistic correction accounting for the Schwarzschild metric of curved space near a large non-rotating mass.
*
Lense–Thirring precession
In general relativity, Lense–Thirring precession or the Lense–Thirring effect (; named after Josef Lense and Hans Thirring) is a Theory of relativity, relativistic correction to the precession of a gyroscope near a large rotating mass such as ...
, a general-relativistic correction accounting for the frame dragging by the Kerr metric of curved space near a large rotating mass.
Astronomy
In astronomy, precession refers to any of several gravity-induced, slow and continuous changes in an astronomical body's rotational axis or orbital path. Precession of the equinoxes, perihelion precession, changes in the
tilt of Earth's axis to its orbit, and the
eccentricity
Eccentricity or eccentric may refer to:
* Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal"
Mathematics, science and technology Mathematics
* Off-center, in geometry
* Eccentricity (graph theory) of a v ...
of its orbit over tens of thousands of years are all important parts of the astronomical theory of
ice age
An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and gree ...
s. ''(See
Milankovitch cycles
Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypot ...
.)''
Axial precession (precession of the equinoxes)
Axial precession is the movement of the rotational axis of an astronomical body, whereby the axis slowly traces out a cone. In the case of Earth, this type of precession is also known as the ''precession of the equinoxes'', ''lunisolar precession'', or ''precession of the equator''. Earth goes through one such complete precessional cycle in a period of approximately 26,000 years or 1° every 72 years, during which the positions of stars will slowly change in both
equatorial coordinates
The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fund ...
and
ecliptic longitude
The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System bodi ...
. Over this cycle, Earth's north axial pole moves from where it is now, within 1° of
Polaris
Polaris is a star in the northern circumpolar constellation of Ursa Minor. It is designated α Ursae Minoris ( Latinized to ''Alpha Ursae Minoris'') and is commonly called the North Star or Pole Star. With an apparent magnitude that ...
, in a circle around the
ecliptic pole
An orbital pole is either point at the ends of an imaginary line segment that runs through the center of an orbit (of a revolving body like a planet, moon or satellite) and is perpendicular to the orbital plane. Projected onto the celestial sphe ...
, with an angular radius of about 23.5°.
The
ancient Greek astronomer Hipparchus
Hipparchus (; el, Ἵππαρχος, ''Hipparkhos''; BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
(c. 190–120 BC) is generally accepted to be the earliest known astronomer to recognize and assess the precession of the equinoxes at about 1° per century (which is not far from the actual value for antiquity, 1.38°), although there is some minor dispute about whether he was. In
ancient China
The earliest known written records of the history of China date from as early as 1250 BC, from the Shang dynasty (c. 1600–1046 BC), during the reign of king Wu Ding. Ancient historical texts such as the '' Book of Documents'' (early chapte ...
, the
Jin-dynasty scholar-official
Yu Xi
Yu Xi (虞喜; 307–345 AD), courtesy name Zhongning (仲寧), was a Chinese astronomer and writer of the Jin dynasty (266–420 AD). He is best known for his discovery of the precession of the equinoxes, independently of the earlier ancient Gr ...
(fl. 307–345 AD) made a similar discovery centuries later, noting that the position of the Sun during the
winter solstice
The winter solstice, also called the hibernal solstice, occurs when either of Earth's poles reaches its maximum tilt away from the Sun. This happens twice yearly, once in each hemisphere ( Northern and Southern). For that hemisphere, the winte ...
had drifted roughly one degree over the course of fifty years relative to the position of the stars. The precession of Earth's axis was later explained by
Newtonian physics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mec ...
. Being an
oblate spheroid
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circ ...
, Earth has a non-spherical shape, bulging outward at the equator. The gravitational
tidal force
The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomen ...
s of the
Moon
The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and
Sun
The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
apply torque to the equator, attempting to pull the
equatorial bulge
An equatorial bulge is a difference between the equatorial and polar diameters of a planet, due to the centrifugal force exerted by the rotation about the body's axis. A rotating body tends to form an oblate spheroid rather than a sphere.
On Ea ...
into the plane of the
ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic again ...
, but instead causing it to precess. The torque exerted by the planets, particularly
Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
, also plays a role.
Apsidal precession
The
orbit
In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a p ...
s of planets around the
Sun
The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
do not really follow an identical ellipse each time, but actually trace out a flower-petal shape because the major axis of each planet's elliptical orbit also precesses within its orbital plane, partly in response to perturbations in the form of the changing gravitational forces exerted by other planets. This is called perihelion precession or
apsidal precession
In celestial mechanics, apsidal precession (or apsidal advance) is the precession (gradual rotation) of the line connecting the apsides (line of apsides) of an astronomical body's orbit. The apsides are the orbital points closest (periapsi ...
.
In the adjunct image, Earth's apsidal precession is illustrated. As the Earth travels around the Sun, its elliptical orbit rotates gradually over time. The eccentricity of its ellipse and the precession rate of its orbit are exaggerated for visualization. Most orbits in the Solar System have a much smaller eccentricity and precess at a much slower rate, making them nearly circular and nearly stationary.
Discrepancies between the observed perihelion precession rate of the planet
Mercury
Mercury commonly refers to:
* Mercury (planet), the nearest planet to the Sun
* Mercury (element), a metallic chemical element with the symbol Hg
* Mercury (mythology), a Roman god
Mercury or The Mercury may also refer to:
Companies
* Merc ...
and that predicted by
classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
were prominent among the forms of experimental evidence leading to the acceptance of
Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's
Theory of Relativity
The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
(in particular, his
General Theory of Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the differential geometry, geometric scientific theory, theory of gravitation published by Albert Einstein in 1915 and is the current descr ...
), which accurately predicted the anomalies.
Deviating from Newton's law, Einstein's theory of gravitation predicts an extra term of , which accurately gives the observed excess turning rate of 43″ every 100 years.
Nodal precession
Orbital node
An orbital node is either of the two points where an orbit intersection (Euclidean geometry), intersects a plane of reference to which it is inclined. A non-inclined orbit, which is coplanarity, contained in the reference plane, has no nodes.
P ...
s also
precess
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In othe ...
over time.
See also
*
Larmor precession
In physics, Larmor precession (named after Joseph Larmor) is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an extern ...
*
Nutation
Nutation () is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame ...
*
Polar motion
Polar motion of the Earth is the motion of the Earth's rotational axis relative to its crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Earth-fixed'' or ECEF reference f ...
*
Precession (mechanical)
Precession is the process of a round part in a round hole, rotating with respect to each other, wherein the inner part begins rolling around the circumference of the outer bore, in a direction opposite of rotation. This is caused by too much cle ...
*
Precession as a form of parallel transport
References
External links
*
Explanation and derivation of formula for precession of a top
{{Authority control
Earth
Dynamics (mechanics)