HOME

TheInfoList



OR:

In
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a graph manifold (in German: Graphenmannigfaltigkeit) is a
3-manifold In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent ...
which is obtained by gluing some
circle bundle In mathematics, a circle bundle is a fiber bundle where the fiber is the circle S^1. Oriented circle bundles are also known as principal ''U''(1)-bundles, or equivalently, as principal ''SO''(2)-bundles. In physics, circle bundles are the natural ...
s. They were discovered and classified by the German topologist
Friedhelm Waldhausen Friedhelm Waldhausen (born 1938 in Millich, Hückelhoven, Rhine Province, died 2024) was a German mathematician known for his work in algebraic topology. He made fundamental contributions in the fields of 3-manifolds and (algebraic) K-theory. ...
in 1967. This definition allows a very convenient combinatorial description as a graph whose vertices are the fundamental parts and (decorated) edges stand for the description of the gluing, hence the name. Two very important classes of examples are given by the Seifert bundles and the Solv manifolds. This leads to a more modern definition: a graph manifold is either a Solv manifold, a manifold having only Seifert pieces in its JSJ decomposition, or connect sums of the previous two categories. From this perspective, Waldhausen's article can be seen as the first breakthrough towards the discovery of JSJ decomposition. One of the numerous consequences of the Thurston-Perelman geometrization theorem is that graph manifolds are precisely the 3-manifolds whose Gromov norm vanishes.


References

* * 3-manifolds Topological graph theory {{graph-stub