HOME

TheInfoList



OR:

Glycogen synthase kinase 3 (GSK-3) is a
serine/threonine protein kinase A serine/threonine protein kinase () is a kinase enzyme, in particular a protein kinase, that phosphorylates the OH group of the amino-acid residues serine or threonine, which have similar side chains. At least 350 of the 500+ human prote ...
that mediates the addition of
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a
protein kinase A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fu ...
for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two
isozyme In biochemistry, isozymes (also known as isoenzymes or more generally as multiple forms of enzymes) are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. Isozymes usually have different kinetic parameters (e.g. dif ...
s encoded by two homologous genes GSK-3α (
GSK3A Glycogen synthase kinase-3 alpha is an enzyme that in humans is encoded by the ''GSK3A'' gene. Glycogen synthase kinase 3-alpha is a multifunctional protein serine kinase, homologous to ''Drosophila'' 'shaggy' (zeste-white3) and implicated in th ...
) and GSK-3β (
GSK3B Glycogen synthase kinase-3 beta, (GSK-3 beta), is an enzyme that in humans is encoded by the ''GSK3B'' gene. In mice, the enzyme is encoded by the Gsk3b gene. Abnormal regulation and expression of GSK-3 beta is associated with an increased suscept ...
). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including
type 2 diabetes Type 2 diabetes, formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urinatio ...
, Alzheimer's disease,
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
,
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
,
addiction Addiction is a neuropsychological disorder characterized by a persistent and intense urge to engage in certain behaviors, one of which is the usage of a drug, despite substantial harm and other negative consequences. Repetitive drug use o ...
and
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
. GSK-3 is a serine/threonine protein kinase that
phosphorylate In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, ...
either threonine or serine, and this phosphorylation controls a variety of biological activities, such as glycogen metabolism,
cell signaling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
, cellular transport, and others. GS inhibition by GSK-3β leads to a decrease in glycogen synthesis in the liver and muscles, along with increased blood glucose or hyperglycemia. This is why GSK-3β is associated with the pathogenesis and progression of many diseases, such as
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ...
,
obesity Obesity is a medical condition, sometimes considered a disease, in which excess body fat has accumulated to such an extent that it may negatively affect health. People are classified as obese when their body mass index (BMI)—a person's ...
,
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
, and Alzheimer's disease. It is active in resting cells and is inhibited by several hormones such as insulin,
endothelial growth factor Vascular endothelial growth factor (VEGF, ), originally known as vascular permeability factor (VPF), is a signal protein produced by many cells that stimulates the formation of blood vessels. To be specific, VEGF is a sub-family of growth factors, ...
, and
platelet-derived growth factor Platelet-derived growth factor (PDGF) is one among numerous growth factors that regulate cell growth and division. In particular, PDGF plays a significant role in blood vessel formation, the growth of blood vessels from already-existing blood v ...
. Insulin inactivates it by phosphorylation of the specific serine residues Ser21 and Ser9 in GSK-3 isoforms α and β, respectively. In a phosphatidylinositol 3-kinase-dependent way. , GSK-3 is the only type of glycogen synthase kinase named and recognized. The
gene symbol Gene nomenclature is the scientific naming of genes, the units of heredity in living organisms. It is also closely associated with protein nomenclature, as genes and the proteins they code for usually have similar nomenclature. An international co ...
s for GSK1 and GSK2 have been withdrawn by the
HUGO Gene Nomenclature Committee The HUGO Gene Nomenclature Committee (HGNC) is a committee of the Human Genome Organisation (HUGO) that sets the standards for human gene nomenclature. The HGNC approves a ''unique'' and ''meaningful'' name for every known human gene, based on a ...
(HGNC), and no new names for these "genes" nor their locations have been specified.


Mechanism

GSK-3 functions by phosphorylating a serine or threonine residue on its target substrate. A positively charged pocket adjacent to the active site binds a "priming" phosphate group attached to a serine or threonine four residues C-terminal of the target phosphorylation site. The active site, at residues 181, 200, 97, and 85, binds the terminal phosphate of ATP and transfers it to the target location on the substrate (see figure 1).


Glycogen synthase

Glycogen synthase is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
that is responsible in glycogen synthesis. It is activated by
glucose 6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way ...
(G6P), and inhibited by glycogen synthase kinases (
GSK3 Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen ...
). Those two mechanisms play an important role in glycogen metabolism.


Function

Phosphorylation of a protein by GSK-3 usually inhibits the activity of its downstream target. GSK-3 is active in a number of central intracellular signaling pathways, including cellular proliferation, migration, glucose regulation, and apoptosis. GSK-3 was originally discovered in the context of its involvement in regulating glycogen synthase. After being primed by
casein kinase 2 Casein kinase 2 ()(CK2/CSNK2) is a serine/threonine-selective protein kinase that has been implicated in cell cycle control, DNA repair, regulation of the circadian rhythm, and other cellular processes. De-regulation of CK2 has been linked to tumo ...
(CK2), glycogen synthase gets phosphorylated at a cluster of three C-terminal serine residues, reducing its activity. In addition to its role in regulating glycogen synthase, GSK-3 has been implicated in other aspects of glucose homeostasis, including the phosphorylation of insulin receptor
IRS1 Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the ''IRS-1'' gene. It is a 131 kDa protein with amino acid sequence of 1242 residues. It contains a single pleckstrin homology (PH) domain at the N-te ...
and of the gluconeogenic enzymes
phosphoenolpyruvate carboxykinase Phosphoenolpyruvate carboxykinase (, PEPCK) is an enzyme in the lyase family used in the metabolic pathway of gluconeogenesis. It converts oxaloacetate into phosphoenolpyruvate and carbon dioxide. It is found in two forms, cytosolic and mitoch ...
and glucose 6 phosphatase. However, these interactions have not been confirmed, as these pathways can be inhibited without the up-regulation of GSK-3. GSK-3 has also been shown to regulate immune and migratory processes. GSK-3 participates in a number of signaling pathways in the innate immune response, including pro-inflammatory cytokine and interleukin production. The inactivation of
GSK3B Glycogen synthase kinase-3 beta, (GSK-3 beta), is an enzyme that in humans is encoded by the ''GSK3B'' gene. In mice, the enzyme is encoded by the Gsk3b gene. Abnormal regulation and expression of GSK-3 beta is associated with an increased suscept ...
by various protein kinases also affects the adaptive immune response by inducing cytokine production and proliferation in naïve and memory CD4+ T cells. In cellular migration, an integral aspect of inflammatory responses, the inhibition of GSK-3 has been reported to play conflicting roles, as local inhibition at growth cones has been shown to promote motility while global inhibition of cellular GSK-3 has been shown to inhibit cell spreading and migration. GSK-3 is also integrally tied to pathways of cell proliferation and apoptosis. GSK-3 has been shown to phosphorylate
Beta-catenin Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. Beta-catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
, thus targeting it for degradation. GSK-3 is therefore a part of the canonical
Beta-catenin Catenin beta-1, also known as beta-catenin (β-catenin), is a protein that in humans is encoded by the ''CTNNB1'' gene. Beta-catenin is a dual function protein, involved in regulation and coordination of cell–cell adhesion and gene transcrip ...
/ Wnt pathway, which signals the cell to divide and proliferate. GSK-3 phosphorylates cyclins D and E, which are important for the transition from G1 to S phase, and causes their degradation. The transcription factors c-myc and c-fos (also S phase promoters ), which are primarily phosphorylated by the dual-specificity tyrosine phosphorylation-regulated kinase, are also phosphorylated by GSK3, causing them to be degraded. GSK-3 also participates in a number of apoptotic signaling pathways by phosphorylating transcription factors that regulate apoptosis. GSK-3 can promote apoptosis by both activating pro-apoptotic factors such as
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
and inactivating survival-promoting factors through phosphorylation. The role of GSK-3 in regulating apoptosis is controversial, however, as some studies have shown that GSK-3β knockout mice are overly sensitized to apoptosis and die in the embryonic stage, while others have shown that overexpression of GSK-3 can induce apoptosis. Overall, GSK-3 appears to both promote and inhibit apoptosis, and this regulation varies depending on the specific molecular and cellular context. GSK-3 is also involved in nuclear transcriptional activator kappa B (NFκB) signaling pathway, Hedgehog signaling pathway, Notch signaling pathway, and epithelial-mesenchymal transition.


Regulation

Due to its importance across numerous cellular functions, GSK-3 activity is subject to tight regulation. The speed and efficacy of GSK-3 phosphorylation is regulated by a number of factors. Phosphorylation of certain GSK-3 residues can increase or decrease its ability to bind substrate. Phosphorylation at tyrosine-216 in GSK-3β or tyrosine-279 in GSK-3α enhances the enzymatic activity of GSK-3, while phosphorylation of serine-9 in GSK-3β or serine-21 in GSK-3α significantly decreases active site availability (see Figure 1). Further, GSK-3 is unusual among kinases in that it usually requires a "priming kinase" to first phosphorylate a substrate. A phosphorylated serine or threonine residue located four amino acids C-terminal to the target site of phosphorylation allows the substrate to bind a pocket of positive charge formed by arginine and lysine residues. Depending on the pathway in which it is being utilized, GSK-3 may be further regulated by cellular localization or the formation of protein complexes. The activity of GSK-3 is far greater in the nucleus and mitochondria than in the cytosol in cortical neurons, while the phosphorylation of Beta-catenin by GSK-3 is mediated by the binding of both proteins to
Axin Axin-1 is a protein that in humans is encoded by the ''AXIN1'' gene. Function This gene encodes a cytoplasmic protein which contains a regulation of G-protein signaling (RGS) domain and a dishevelled and axin (DIX) domain. The encoded protei ...
, a scaffold protein, allowing Beta-catenin to access the active site of GSK-3.


Disease relevance

Due to its involvement in a great number of signaling pathways, GSK-3 has been associated with a host of high-profile diseases. GSK-3 inhibitors are currently being tested for therapeutic effects in Alzheimer's disease,
type 2 diabetes mellitus Type 2 diabetes, formerly known as adult-onset diabetes, is a form of diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urinatio ...
(T2DM), some forms of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
, and
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
. It has now been shown that
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
, which is used as a treatment for
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
, acts as a mood stabilizer by selectively inhibiting GSK-3. The mechanism through which GSK-3 inhibition stabilizes mood is not known, though it is suspected that the inhibition of GSK-3's ability to promote inflammation contributes to the therapeutic effect. Inhibition of GSK-3 also destabilises Rev-ErbA alpha transcriptional repressor, which has a significant role in the circadian clock. Elements of the circadian clock may be connected with predisposition to bipolar mood disorder. GSK-3 activity has been associated with both pathological features of Alzheimer's disease, namely the buildup of
amyloid-β Amyloid beta (Aβ or Abeta) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid precursor protein (APP), which ...
(Aβ) deposits and the formation of neurofibrillary tangles. GSK-3 is thought to directly promote Aβ production and to be tied to the process of the
hyperphosphorylation Hyperphosphorylation occurs when a biochemical with multiple phosphorylation sites is fully saturated. Hyperphosphorylation is one of the signaling mechanisms used by the cell to regulate mitosis. When these mechanisms fail, developmental problems ...
of
tau protein The tau proteins (abbreviated from tubulin associated unit) are a group of six highly soluble protein isoforms produced by alternative splicing from the gene ''MAPT'' (microtubule-associated protein tau). They have roles primarily in maintaining ...
s, which leads to the tangles. Due to these roles of GSK-3 in promoting Alzheimer's disease, GSK-3 inhibitors may have positive therapeutic effects on Alzheimer's patients and are currently in the early stages of testing. In a similar fashion, targeted inhibition of GSK-3 may have therapeutic effects on certain kinds of cancer. Though GSK-3 has been shown to promote apoptosis in some cases, it has also been reported to be a key factor in
tumorigenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnor ...
in some cancers. Supporting this claim, GSK-3 inhibitors have been shown to induce apoptosis in glioma and pancreatic cancer cells. GSK-3 also seems to be responsible for NFκB aberrant activity in pediatric acute lymphoblastic leukemia and pancreatic cancer cells. In renal cancer cells, GSK-3 inhibitors induce cell cycle arrest, differentiation of the malignant cells, and autophagy. In contrast to the above neoplasms, high expression of inactive pGSK3β-S9 is found in skin, oral, and lung cancers, suggesting tumor suppressive effects of the enzyme in these cancers. In melanoma, the microRNA miR-769 inhibits GSK-3 activity during the tumor development process, also indicating tumor suppressive effects of GSK3. GSK-3 inhibitors have also shown promise in the treatment of T2DM. Though GSK-3 activity under diabetic conditions can differ radically across different tissue types, studies have shown that introducing competitive inhibitors of GSK-3 can increase glucose tolerance in diabetic mice. GSK-3 inhibitors may also have therapeutic effects on hemorrhagic transformation after acute ischemic stroke. GSK-3 can negatively regulate the insulin signaling pathway by inhibiting IRS1 via phosphorylation of serine-332, rendering the insulin receptor incapable of activating IRS1 and further initiating the canonical PI3K/Akt pathway. The role that inhibition of GSK-3 might play across its other signaling roles is not yet entirely understood. GSK-3 inhibition also mediates an increase in the transcription of the transcription factor Tbet (Tbx21) and an inhibition of the transcription of the inhibitory co-receptor programmed cell death-1 (PD-1) on T-cells. GSK-3 inhibitors increased in vivo CD8(+) OT-I CTL function and the clearance of viral infections by murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 as well as anti-PD-1 in immunotherapy.


Inhibitors

Glycogen synthase kinase inhibitors are different chemotypes and have variable mechanisms of action; they may be cations, from natural sources, synthetic ATP and non-ATP competitive inhibitors and substrate-competitive inhibitors. GSK3 is a bi-lobar architecture with N-terminal and
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
, the N-terminal is responsible for ATP binding and C-terminal which is called as
activation loop In molecular biology, an intrinsically disordered protein (IDP) is a protein that lacks a fixed or ordered three-dimensional structure, typically in the absence of its macromolecular interaction partners, such as other proteins or RNA. IDPs ran ...
mediates the kinase activity, Tyrosine located at the C-terminal it essential for full GSK3 activity.


Benefits of GSK-3β inhibitors

In diabetes, GSK-3β inhibitors increase insulin sensitivity, glycogen synthesis, and glucose metabolism in skeletal muscles, and reduce obesity by affecting the
adipogenesis Adipogenesis is the formation of adipocytes (fat cells) from stem cells. It involves 2 phases, determination, and terminal differentiation. Determination is mesenchymal stem cells committing to the adipocyte precursor cells, also known as preadipocy ...
process. GSK-3β is also over expressed in several types of cancers, like
colorectal The large intestine, also known as the large bowel, is the last part of the gastrointestinal tract and of the digestive system in tetrapods. Water is absorbed here and the remaining waste material is stored in the rectum as feces before being ...
,
ovarian The ovary is an organ in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilized by a sperm. There is an ovary () found on each side of the body ...
, and prostate cancer. GSK-3β inhibitors also aid in the treatment of Alzheimer's disease, stroke, and
mood disorder A mood disorder, also known as an affective disorder, is any of a group of conditions of mental and behavioral disorder where a disturbance in the person's mood is the main underlying feature. The classification is in the '' Diagnostic and St ...
s, including
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
.


Specific agents

Inhibitors of GSK-3 include:


Metal cations

*
Beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
*
Copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
*
Lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
( IC50=2mM) * Mercury *
Tungsten Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isol ...
(Indirect) *
Zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
( IC50=15μM)


ATP-competitive


Marine organism-derived

* 6-BIO (IC50=1.5μM) * Dibromocantharelline (IC50=3μM) * Hymenialdesine (IC50=10nM) * Indirubin (IC50=5-50nM) * Meridianin


Aminopyrimidines

* CHIR99021 (IC50=6.9nM-10nM) * CHIR98014 (IC50=0.58-0.65nM) * CT98014 * CT98023 * CT99021 * TWS119 (IC50=30nM)


Arylindolemaleimide

* SB-216763 (IC50=34nM) * SB-41528 (IC50=31-78nM)


Thiazoles

* AR-A014418 (IC50=104nM) * AZD-1080 (IC50=6.9nM-31nM)


Paullones

IC50=4-80nM: * Alsterpaullone * Cazpaullone * Kenpaullone


Aloisines

IC50=0.5-1.5μM:


Non-ATP competitive


Marine organism-derived

* Manzamine A (IC50=1.5μM) * Palinurine (IC50=4.5μM) * Tricantine (IC50=7.5μM)


Thiazolidinediones

* TDZD-8 (IC50=2μM) * NP00111 (IC50=2μM) * NP031115 (IC50=4μM) * Tideglusib (IC50=60nM)


Halomethylketones

* HMK-32 (IC50=1.5μM)


Peptides

* L803-mts (IC50=20μM) * L807-mts (IC50=1μM)


Unknown Mechanism (small-molecule inhibitors)

* COB-187 (IC50=11nM-22nM) * COB-152 (IC50=77nM-132nM)


Lithium

Lithium which is used in the treatment of
bipolar disorder Bipolar disorder, previously known as manic depression, is a mental disorder characterized by periods of depression and periods of abnormally elevated mood that last from days to weeks each. If the elevated mood is severe or associated with ...
was the first natural GSK-3 inhibitor discovered. It inhibits GSK-3 directly by competition with magnesium ions and indirectly by phosphorylation and auto-regulation of serine. Lithium has been found to have insulin-like effects on glucose metabolism, including stimulation of glycogen synthesis in fat cells, skin, and muscles, increasing glucose uptake, and activation of GS activity. In addition to inhibition of GSK-3, it also inhibits other enzymes involved in the regulation of glucose metabolisms, such as myo-inositol-1-monophosphatase and 1,6 bisphosphatase. Also, it has shown therapeutic benefit in Alzheimer's and other neurodegenerative diseases such as epileptic neurodegeneration.


Naproxen and Cromolyn

Naproxen is a
non-steroidal anti-inflammatory drug Non-steroidal anti-inflammatory drugs (NSAID) are members of a therapeutic drug class which reduces pain, decreases inflammation, decreases fever, and prevents blood clots. Side effects depend on the specific drug, its dose and duration of ...
while cromolyn is an anti-allergic agent which acts as a
mast cell A mast cell (also known as a mastocyte or a labrocyte) is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a par ...
stabilizer. Both drugs have demonstrated the anticancer effect in addition to hypoglycemic effect due to inhibition of glycogen synthase kinase-3β (GSK-3β). To validate the anti-GSK-3β hypothesis of naproxen and cromolyn, docking of the two structures against GSK-3β binding pocket and comparing their fitting with known GSK-3β inhibitor ARA014418 was performed, in addition to measuring the serum glucose, serum insulin, serum C-peptide, weight variation and hepatic glycogen levels for normal and diabetic fasting animal's models to assess their in vitro hypoglycemic effects. Naproxen and cromolyn were successfully docked into the binding site of GSK-3β (both were fitted into its binding pocket). They exhibited electrostatic, hydrophobic, and hydrogen-bonding interactions with key amino acids within the binding pocket with binding interaction profiles similar to AR-A014418 (the known inhibitor). The negative charges of the carboxylic acid groups in both drugs interact electrostatically with the positively charged guanidine group of Arg141. Moreover, the hydrogen bonding interactions between carboxylic acid moieties of cromolyn and the ammonium groups of Lys183 and Lys60, in addition to π-stacking of the naphthalene ring system of naproxen with the phenolic ring of Tyr134. Antidiabetic effects of naproxen and cromolyn: In normal animal models, both drugs have showed dose-dependent reduction in blood glucose levels and rise in glycogen levels. In chronic type II diabetic model, glucose levels were also reduced, and glycogen level and insulin levels were elevated in a dose-dependent manner with a reduction in plasma glucose. Anti-obesity effects of naproxen and cromolyn: Both drugs showed significant anti-obesity effects as they reduce body weight, resistin, and glucose levels in a dose-dependent manner. They were also found to elevate
adiponectin Adiponectin (also referred to as GBP-28, apM1, AdipoQ and Acrp30) is a protein hormone and adipokine, which is involved in regulating glucose levels as well as fatty acid breakdown. In humans it is encoded by the ''ADIPOQ'' gene and it is produ ...
, insulin, and C-peptide levels in a dose-dependent manner.


Famotidine

Famotidine is a specific, long-acting
H2 antagonist H2 antagonists, sometimes referred to as H2RAs and also called H2 blockers, are a class of medications that block the action of histamine at the histamine H2 receptors of the parietal cells in the stomach. This decreases the production of st ...
that decreases gastric acid secretion. It is used in the treatment of peptic ulcer disease, GERD, and pathological hypersecretory conditions, like Zollinger–Ellison syndrome. (14,15) H2-receptor antagonists affect hormone metabolism, but their effect on glucose metabolism is not well established. (16) A study has revealed a glucose-lowering effect for famotidine. Recently, a molecular docking was performed as a preliminary in-silico screening test to study famotidine binding to GSK-3β active site. The study of famotidine binding to the enzyme has showed that famotidine can be docked within the binding pocket of GSK-3β making significant interactions with key points within the GSK-3β binding pocket. Strong hydrogen bond interactions with the key amino acids PRO-136 and VAL -135 and potential hydrophobic interaction with LEU-188 were similar to those found in the ligand binding to the enzyme (AR-A014418). Furthermore, famotidine showed high GSK-3β binding affinity and inhibitory activity due to interactions that stabilize the complex, namely hydrogen bonding of guanidine group in famotidine with the sulfahydryl moiety in CYS-199; and electrostatic interactions between the same guanidine group with the carboxyl group in ASP-200, the hydrogen bond between the terminal NH2 group, the OH of the TYR-143, and the hydrophobic interaction of the sulfur atom in the thioether with ILE-62. In vitro studies showed that famotidine inhibits GSK-3β activity and increases liver glycogen reserves in a dose dependent manner. A fourfold increase in the liver glycogen level with the use of the highest dose of famotidine (4.4 mg/kg) was observed. Also, famotidine has been shown to decrease serum glucose levels 30, and 60 minutes after oral glucose load in healthy individuals.


Curcumin

Curcumin, which Is a constituent of
turmeric Turmeric () is a flowering plant, ''Curcuma longa'' (), of the ginger family, Zingiberaceae, the rhizomes of which are used in cooking. The plant is a perennial, rhizomatous, herbaceous plant native to the Indian subcontinent and Southeast ...
spice, has flavoring and coloring properties. It has two symmetrical forms: enol (the most abundant forms) and ketone. Curcumin has wide pharmacological activities: anti-inflammatory, anti-microbial, hypoglycemic, anti-oxidant, and wound healing effects. In animal models with Alzheimer disease, it has anti-destructive effect of beta amyloid in the brain, and recently it shows anti-malarial activity. Curcumin also has chemo preventative and anti-cancer effects., and it has been shown to attenuate oxidative stress and renal dysfunction in diabetic animals with chronic use. Curcumin's mechanism of action is anti-inflammatory; it inhibits the nuclear transcriptional activator kappa B ( NF-KB) that is activated whenever there is inflammatory response. NF-kB has two regulatory factors, IkB and GSK-3, which suggests curcumin directly binds and inhibits GSK-3B. An in vitro study confirmed GSK-3B inhibition by simulating molecular docking using a silico docking technique. The concentration at which 50% of GK-3B would be inhibited by curcumin is 66.3 nM. Among its two forms, experimental and theoretical studies show that the enol form is the favored form due to its intra-molecular hydrogen bonding, and an NMR experiment show that enol form exist in a variety of solvents.


Olanzapine

Antipsychotic Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of ...
medications are increasingly used for
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wit ...
, bipolar disorder, anxiety, and other psychiatric conditions Atypical antipsychotics are more commonly used than first generation antipsychotics because they decrease the risk of extrapyramidal symptoms, such as
tardive dyskinesia Tardive dyskinesia (TD) is a disorder that results in involuntary repetitive body movements, which may include grimacing, sticking out the tongue or smacking the lips. Additionally, there may be rapid jerking movements or slow writhing movemen ...
, and have better efficacy. Olanzapine and atypical antipsychotics induce weight gain through increasing body fat. It also affects glucose metabolism, and several studies shows that it may worsen diabetes. A recent study shows that olanzapine inhibits GSK3 activity, suggesting olanzapine permits glycogen synthesis. A study of the effect of olanzapine on mouse blood glucose and glycogen levels showed a significant decrease in blood glucose level and elevation of glycogen level in mice, and the IC50% of olanzapine were 91.0 nm, which is considered a potent inhibitor. The study also illustrates that sub-chronic use of olanzapine results in potent inhibition of GSK3.


Pyrimidine derivatives

Pyrimidine analogues are antimetabolites that interfere with nucleic acid synthesis. Some of them have been shown to fit the ATP-binding pocket of GSK-3β to lower blood glucose levels and improve some neuronal diseases.


See also

*
Ketamine Ketamine is a dissociative anesthetic used medically for induction and maintenance of anesthesia. It is also used as a recreational drug. It is one of the safest anesthetics, as, in contrast with opiates, ether, and propofol, it suppresses ...
* Tau-protein kinase


References


External links

* {{Portal bar, Biology, border=no Protein kinases Biology of bipolar disorder EC 2.7.11