Geochronology is the
science
Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe.
Science may be as old as the human species, and some of the earliest archeological evidence for ...
of
determining the age of
rocks
In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's ...
,
fossil
A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
s, and
sediment
Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand an ...
s using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through
radioactive isotopes
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
, whereas relative geochronology is provided by tools such as
paleomagnetism
Paleomagnetism (or palaeomagnetismsee ), is the study of magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called ''paleomagnetists.''
Certain magnetic minerals in rock ...
and
stable isotope ratio
The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
s. By combining multiple geochronological (and
biostratigraphic
Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them.Hine, Robert. “Biostratigraphy.” ''Oxford Reference: Dictionary of Bio ...
) indicators the precision of the recovered age can be improved.
Geochronology is different in application from biostratigraphy, which is the science of assigning sedimentary rocks to a known geological period via describing, cataloging and comparing fossil floral and faunal assemblages. Biostratigraphy does not ''directly'' provide an absolute age determination of a rock, but merely places it within an ''interval'' of time at which that fossil assemblage is known to have coexisted. Both disciplines work together hand in hand, however, to the point where they share the same system of naming
strata
In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as ei ...
(rock layers) and the time spans utilized to classify sublayers within a stratum.
The science of geochronology is the prime tool used in the discipline of
chronostratigraphy
Chronostratigraphy is the branch of stratigraphy that studies the ages of rock strata in relation to time.
The ultimate aim of chronostratigraphy is to arrange the sequence of deposition and the time of deposition of all rocks within a geologica ...
, which attempts to derive absolute age dates for all fossil assemblages and determine the geologic
history of the Earth
The history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geologi ...
and
extraterrestrial bodies.
Dating methods
Radiometric dating
By measuring the amount of
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
of a
radioactive isotope
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
with a known
half-life
Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
, geologists can establish the absolute age of the parent material. A number of radioactive isotopes are used for this purpose, and depending on the rate of decay, are used for dating different geological periods. More slowly decaying isotopes are useful for longer periods of time, but less accurate in absolute years. With the exception of the
radiocarbon method, most of these techniques are actually based on measuring an increase in the abundance of a
radiogenic
A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide).
Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
isotope, which is the decay-product of the radioactive parent isotope. Two or more radiometric methods can be used in concert to achieve more robust results. Most radiometric methods are suitable for geological time only, but some such as the radiocarbon method and the
40Ar/
39Ar dating method can be extended into the time of early human life and into recorded history.
Some of the commonly used techniques are:
*
Radiocarbon dating
Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.
The method was dev ...
. This technique measures the decay of
carbon-14
Carbon-14, C-14, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and coll ...
in organic material and can be best applied to samples younger than about 60,000 years.
*
Uranium–lead dating
Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routi ...
. This technique measures the ratio of two lead
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s (lead-206 and lead-207) to the amount of uranium in a mineral or rock. Often applied to the trace mineral
zircon
Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of the r ...
in
igneous rock
Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main The three types of rocks, rock types, the others being Sedimentary rock, sedimentary and metamorphic rock, metamorphic. Igneous rock ...
s, this method is one of the two most commonly used (along with
argon–argon dating
Argon–argon (or 40Ar/39Ar) dating is a radiometric dating method invented to supersede potassiumargon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer ...
) for geologic dating.
Monazite geochronology
Monazite geochronology is a dating technique to study geological history using the mineral monazite. It is a powerful tool in studying the complex history of metamorphic rocks particularly, as well as igneous, sedimentary and hydrothermal rocks. ...
is another example of U–Pb dating, employed for dating metamorphism in particular. Uranium–lead dating is applied to samples older than about 1 million years.
*
Uranium–thorium dating
Uranium–thorium dating, also called thorium-230 dating, uranium-series disequilibrium dating or uranium-series dating, is a radiometric dating technique established in the 1960s which has been used since the 1970s to determine the age of calciu ...
. This technique is used to date
speleothem
A speleothem (; ) is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on ...
s,
coral
Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and sec ...
s,
carbonate
A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate g ...
s, and fossil
bone
A bone is a Stiffness, rigid Organ (biology), organ that constitutes part of the skeleton in most vertebrate animals. Bones protect the various other organs of the body, produce red blood cell, red and white blood cells, store minerals, provid ...
s. Its range is from a few years to about 700,000 years.
*
Potassium–argon dating and
argon–argon dating
Argon–argon (or 40Ar/39Ar) dating is a radiometric dating method invented to supersede potassiumargon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer ...
. These techniques date
metamorphic
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causin ...
,
igneous
Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or ...
and
volcanic
A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
On Earth, volcanoes are most often found where tectonic plates a ...
rocks. They are also used to date
volcanic ash
Volcanic ash consists of fragments of rock, mineral crystals, and volcanic glass, created during volcano, volcanic eruptions and measuring less than 2 mm (0.079 inches) in diameter. The term volcanic ash is also often loosely used t ...
layers within or overlying
paleoanthropologic
Paleoanthropology or paleo-anthropology is a branch of paleontology and anthropology which seeks to understand the early development of anatomically modern humans, a process known as hominization, through the reconstruction of evolutionary kinship ...
sites. The younger limit of the argon–argon method is a few thousand years.
*
Electron spin resonance
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spi ...
(ESR) dating
Fission-track dating
Cosmogenic nuclide geochronology
A series of related techniques for determining the age at which a geomorphic surface was created (
exposure dating), or at which formerly
surficial materials were buried (burial dating). Exposure dating uses the concentration of exotic nuclides (e.g.
10Be,
26Al,
36Cl) produced by cosmic rays interacting with Earth materials as a proxy for the age at which a surface, such as an alluvial fan, was created. Burial dating uses the differential radioactive decay of 2 cosmogenic elements as a proxy for the age at which a sediment was screened by burial from further cosmic rays exposure.
Luminescence dating
Luminescence dating techniques observe 'light' emitted from materials such as quartz, diamond, feldspar, and calcite. Many types of luminescence techniques are utilized in geology, including
optically stimulated luminescence
In physics, optically stimulated luminescence (OSL) is a method for measuring doses from ionizing radiation. It is used in at least two applications:
* Luminescence dating of ancient materials: mainly geological sediments and sometimes fired pott ...
(OSL),
cathodoluminescence
Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is th ...
(CL), and
thermoluminescence
Thermoluminescence is a form of luminescence that is exhibited by certain crystalline materials, such as some minerals, when previously absorbed energy from electromagnetic radiation or other ionizing radiation is re-emitted as light upon he ...
(TL). Thermoluminescence and optically stimulated luminescence are used in archaeology to date 'fired' objects such as pottery or cooking stones and can be used to observe sand migration.
Incremental dating
Incremental dating Incremental dating techniques allow the construction of year-by-year annual chronologies, which can be temporally fixed (''i.e.,'' linked to the present day and thus calendar or sidereal time) or floating.
Archaeologists use tree-ring dating ( d ...
techniques allow the construction of year-by-year annual chronologies, which can be fixed (''i.e.'' linked to the present day and thus
calendar
A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of a single and specific day within such a system. A calendar is also a physi ...
or
sidereal time
Sidereal time (as a unit also sidereal day or sidereal rotation period) (sidereal ) is a timekeeping system that astronomers use to locate celestial objects. Using sidereal time, it is possible to easily point a telescope to the proper coord ...
) or floating.
*
Dendrochronology
Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed. As well as dating them, this can give data for dendroclimatology, the study of climate and atmos ...
*
Ice core
An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ic ...
s
*
Lichenometry
In archaeology, palaeontology, and geomorphology, lichenometry is a geomorphic method of geochronologic dating that uses lichen growth to determine the age of exposed rock, based on a presumed specific rate of increase in radial size over time.L ...
*
Varve
A varve is an annual layer of sediment or sedimentary rock.
The word 'varve' derives from the Swedish word ''varv'' whose meanings and connotations include 'revolution', 'in layers', and 'circle'. The term first appeared as ''Hvarfig lera'' (var ...
s
Paleomagnetic dating
A sequence of paleomagnetic poles (usually called virtual geomagnetic poles), which are already well defined in age, constitutes an apparent polar wander path (APWP). Such a path is constructed for a large continental block. APWPs for different continents can be used as a reference for newly obtained poles for the rocks with unknown age. For paleomagnetic dating, it is suggested to use the APWP in order to date a pole obtained from rocks or sediments of unknown age by linking the paleopole to the nearest point on the APWP. Two methods of paleomagnetic dating have been suggested: (1) the angular method and (2) the rotation method. The first method is used for paleomagnetic dating of rocks inside of the same continental block. The second method is used for the folded areas where tectonic rotations are possible.
Magnetostratigraphy
Magnetostratigraphy
Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their '' ...
determines age from the pattern of magnetic polarity zones in a series of bedded sedimentary and/or volcanic rocks by comparison to the magnetic polarity timescale. The polarity timescale has been previously determined by dating of seafloor magnetic anomalies, radiometrically dating volcanic rocks within magnetostratigraphic sections, and astronomically dating magnetostratigraphic sections.
Chemostratigraphy
Global trends in isotope compositions, particularly carbon-13 and strontium isotopes, can be used to correlate strata.
Correlation of marker horizons
Marker horizon
Marker horizons (also referred to as chronohorizons, key beds or marker beds) are stratigraphic units of the same age and of such distinctive composition and appearance, that, despite their presence in separate geographic locations, there is no do ...
s are stratigraphic units of the same age and of such distinctive composition and appearance that, despite their presence in different geographic sites, there is certainty about their age-equivalence. Fossil faunal and floral
assemblages, both marine and terrestrial, make for distinctive marker horizons.
Tephrochronology
250px, Tephra horizons in south-central Iceland. The thick and light coloured layer at the height of the volcanologist's hands is rhyolitic tephra from Hekla.
Tephrochronology is a Geochronology, geochronological technique that uses discrete la ...
is a method for geochemical correlation of unknown volcanic ash (tephra) to geochemically fingerprinted, dated
tephra
Tephra is fragmental material produced by a volcanic eruption regardless of composition, fragment size, or emplacement mechanism.
Volcanologists also refer to airborne fragments as pyroclasts. Once clasts have fallen to the ground, they rem ...
. Tephra is also often used as a dating tool in archaeology, since the dates of some eruptions are well-established.
Geological hierarchy of chronological periodization
Geochronology, from largest to smallest:
#
Supereon
#
Eon
Eon or Eons may refer to: Time
* Aeon, an indefinite long period of time
* Eon (geology), a division of the geologic time scale
Arts and entertainment
Fictional characters
* Eon, in the 2007 film ''Ben 10: Race Against Time''
* Eon, in the ...
#
Era
An era is a span of time defined for the purposes of chronology or historiography, as in the regnal eras in the history of a given monarchy, a calendar era used for a given calendar, or the geological eras defined for the history of Earth.
Compa ...
#
Period
Period may refer to:
Common uses
* Era, a length or span of time
* Full stop (or period), a punctuation mark
Arts, entertainment, and media
* Period (music), a concept in musical composition
* Periodic sentence (or rhetorical period), a concept ...
#
Epoch
In chronology and periodization, an epoch or reference epoch is an instant in time chosen as the origin of a particular calendar era. The "epoch" serves as a reference point from which time is measured.
The moment of epoch is usually decided by ...
#
Age
Age or AGE may refer to:
Time and its effects
* Age, the amount of time someone or something has been alive or has existed
** East Asian age reckoning, an Asian system of marking age starting at 1
* Ageing or aging, the process of becoming older ...
#
Chron
Chron may refer to:
Science
* Chronozone or chron, a term used for a time interval in chronostratigraphy
* Polarity chron or chron, in magnetostratigraphy, the time interval between polarity reversals of the Earth's magnetic field
Other
* ...
Differences from chronostratigraphy
It is important not to confuse geochronologic and chronostratigraphic units. Geochronological units are periods of time, thus it is correct to say that ''
Tyrannosaurus
''Tyrannosaurus'' is a genus of large theropoda, theropod dinosaur. The species ''Tyrannosaurus rex'' (''rex'' meaning "king" in Latin), often called ''T. rex'' or colloquially ''T-Rex'', is one of the best represented theropods. ''Tyrannosa ...
rex'' lived during the Late
Cretaceous
The Cretaceous ( ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of th ...
Epoch. Chronostratigraphic units are geological material, so it is also correct to say that fossils of the genus ''Tyrannosaurus'' have been found in the Upper Cretaceous Series.
In the same way, it is entirely possible to go and visit an Upper Cretaceous Series deposit – such as the
Hell Creek
The Hell Creek Formation is an intensively studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana. The formation stretches over portions of ...
deposit where the ''Tyrannosaurus'' fossils were found – but it is naturally impossible to visit the Late Cretaceous Epoch as that is a period of time.
See also
*
Astronomical chronology
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, ...
**
Age of Earth
The age of Earth is estimated to be 4.54 ± 0.05 billion years This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of ...
**
Age of the universe
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe:
a measurement based on direct observations of an early state of the universe, ...
*
Chronological dating
Chronological dating, or simply dating, is the process of attributing to an object or event a date in the past, allowing such object or event to be located in a previously established chronology. This usually requires what is commonly known as a "d ...
, archaeological chronology
**
Absolute dating
Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accuracy ...
**
Relative dating
Relative dating is the science of determining the relative order of past events (i.e., the age of an object in comparison to another), without necessarily determining their absolute age (i.e., estimated age). In geology, rock or superficial dep ...
**
Phase (archaeology)
In archaeology, a phase refers to the logical reduction of contexts recorded during excavation to nearly contemporary archaeological horizons that represent a distinct "phase" of previous land use. These often but not always will be a representat ...
**
Archaeological association
This page is a glossary of archaeology, the study of the human past from material remains.
A
B
C
D
E
F
...
* Geochronology
**
Closure temperature
In radiometric dating, closure temperature or blocking temperature refers to the temperature of a system, such as a mineral, at the time given by its radiometric date. In physical terms, the closure temperature is the temperature at which a syste ...
**
Geologic time scale
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochrono ...
**
Geological history of Earth
Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ear ...
**
Thermochronology
Thermochronology is the study of the thermal evolution of a region of a planet. Thermochronologists use radiometric dating along with the closure temperatures that represent the temperature of the mineral being studied at the time given by the dat ...
**
List of geochronologic names
This is a list of official and unofficial names for time spans in the geologic timescale and units of chronostratigraphy. Since many of the smallest subdivisions of the geologic timescale were in the past defined on regional lithostratigraphic unit ...
* General
**
Consilience
In science and history, consilience (also convergence of evidence or concordance of evidence) is the principle that evidence from independent, unrelated sources can "converge" on strong conclusions. That is, when multiple sources of evidence are ...
, evidence from independent, unrelated sources can "converge" on strong conclusions
References
Further reading
*Smart, P.L., and Frances, P.D. (1991), ''Quaternary dating methods - a user's guide''. Quaternary Research Association Technical Guide No.4
*Lowe, J.J., and Walker, M.J.C. (1997), ''Reconstructing Quaternary Environments'' (2nd edition). Longman publishing
*Mattinson, J. M. (2013), ''Revolution and evolution: 100 years of U-Pb geochronology''. Elements 9, 53–57.
*''Geochronology bibliography'
Talk:Origins Archive
External links
International Commission on Stratigraphy
{{Authority control
Radiometric dating