In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, generalized means (or power mean or Hölder mean from
Otto Hölder
Ludwig Otto Hölder (December 22, 1859 – August 29, 1937) was a German mathematician born in Stuttgart.
Early life and education
Hölder was the youngest of three sons of professor Otto Hölder (1811–1890), and a grandson of professor Christ ...
)
[ are a family of functions for aggregating sets of numbers. These include as special cases the ]Pythagorean means
In mathematics, the three classical Pythagorean means are the arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM). These means were studied with proportions by Pythagoreans and later generations of Greek mathematicians b ...
(arithmetic
Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, geometric
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
, and harmonic
A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set.
For a data set, the ''arithme ...
s).
Definition
If is a non-zero real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
, and are positive real numbers, then the generalized mean or power mean with exponent of these positive real numbers is:
(See -norm). For we set it equal to the geometric mean (which is the limit of means with exponents approaching zero, as proved below):
Furthermore, for a sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of positive weights we define the weighted power mean as:
and when , it is equal to the weighted geometric mean
In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean.
Given a sample x=(x_1,x_2\dots,x_n) and weights w=(w_1, w_2,\dots,w_n), it is calculated as:
: \bar = \left(\prod_^n x_i^\ri ...
:
The unweighted means correspond to setting all .
Special cases
A few particular values of yield special cases with their own names:[ (retrieved 2019-08-17)]
;minimum
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
:
;harmonic mean
In mathematics, the harmonic mean is one of several kinds of average, and in particular, one of the Pythagorean means. It is sometimes appropriate for situations when the average rate is desired.
The harmonic mean can be expressed as the recipro ...
:
;geometric mean
In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the ...
: