interstellar gas
In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
,
dust
Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ho ...
,
dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
, bound together by
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. The word is derived from the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
' (), literally 'milky', a reference to the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy that contains the
Solar System
The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a hundred million stars, to the largest galaxies known –
supergiants
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars ...
with one hundred
trillion
''Trillion'' is a number with two distinct definitions:
* 1,000,000,000,000, i.e. one million million, or (ten to the twelfth power), as defined on the short scale. This is now the meaning in both American and British English.
* 1,000,000,000,0 ...
stars, each orbiting its galaxy's center of mass. Most of the mass in a typical galaxy is in the form of
dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
, with only a few percent of that mass visible in the form of stars and nebulae.
Supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s are a common feature at the centres of galaxies.
Galaxies are categorized according to their visual
morphology
Morphology, from the Greek and meaning "study of shape", may refer to:
Disciplines
* Morphology (archaeology), study of the shapes or forms of artifacts
* Morphology (astronomy), study of the shape of astronomical objects such as nebulae, galaxies ...
as
elliptical
Elliptical may mean:
* having the shape of an ellipse, or more broadly, any oval shape
** in botany, having an elliptic leaf shape
** of aircraft wings, having an elliptical planform
* characterised by ellipsis (the omission of words), or by conc ...
supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
s at their centers. The Milky Way's central black hole, known as
Sagittarius A*
Sagittarius A* ( ), abbreviated Sgr A* ( ), is the supermassive black hole at the Galactic Center of the Milky Way. It is located near the border of the constellations Sagittarius and Scorpius, about 5.6° south of the ecliptic, ...
, has a mass four million times greater than the
Sun
The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. As of March 2016,
GN-z11
GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. It is one of the farthest known galaxies from Earth ever discovered. The 2015 discovery was published in a 2016 paper headed by Pascal Oesch and Gabriel Brammer (Cosmic Dawn ...
is the oldest and most distant galaxy observed. It has a
comoving distance
In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. ''Proper distance'' roughly corresponds to where a distant object would be at a spec ...
of 32 billion
light-years
A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
from
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, and is seen as it existed just 400 million years after the Big Bang.
In 2016, using 20 years of images from the Hubble space telescope, it was estimated that there were in total two trillion () or more galaxies in the
observable universe
The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these ob ...
, and as many as an estimated stars (more stars than all the grains of sand on all beaches of the planet
Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
).
In 2021, data from NASA's '' New Horizons'' space probe was used to revise the earlier estimate to roughly 200 billion galaxies (),
Most galaxies are 1,000 to 100,000
parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
s in diameter (approximately 3,000 to 300,000 light years) and are separated by distances on the order of millions of parsecs (or megaparsecs). For comparison, the Milky Way has a diameter of at least 26,800 parsecs (87,400 ly) and is separated from the
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
(with diameter of about 152,000 ly), its nearest large neighbor, by 780,000 parsecs (2.5 million ly.)
The
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
between galaxies is filled with a tenuous gas (the
intergalactic medium
Intergalactic may refer to:
* "Intergalactic" (song), a song by the Beastie Boys
* ''Intergalactic'' (TV series), a 2021 UK science fiction TV series
* Intergalactic space
* Intergalactic travel, travel between galaxies in science fiction and ...
) with an average density of less than one
atom
Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons.
Every solid, liquid, gas, ...
per cubic meter. Most galaxies are gravitationally organized into
groups
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
is part of the
Local Group
The Local Group is the galaxy group that includes the Milky Way.
It has a total diameter of roughly , and a total mass of the order of .
It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
, which it dominates along with
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
. The group is part of the
Virgo Supercluster
The Virgo Supercluster (Virgo SC) or the Local Supercluster (LSC or LS) is a mass concentration of galaxies containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least ...
voids
Void may refer to:
Science, engineering, and technology
* Void (astronomy), the spaces between galaxy filaments that contain no galaxies
* Void (composites), a pore that remains unoccupied in a composite material
* Void, synonym for vacuum, a s ...
. Both the Local Group and the
Virgo Supercluster
The Virgo Supercluster (Virgo SC) or the Local Supercluster (LSC or LS) is a mass concentration of galaxies containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least ...
are contained in a much larger cosmic structure named Laniakea.
Medieval Latin
Medieval Latin was the form of Literary Latin used in Roman Catholic Western Europe during the Middle Ages. In this region it served as the primary written language, though local languages were also written to varying degrees. Latin functione ...
from the
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
term for the Milky Way, ' () 'milky (circle)', named after its appearance as a milky band of light in the sky. In
Greek mythology
A major branch of classical mythology, Greek mythology is the body of myths originally told by the ancient Greeks, and a genre of Ancient Greek folklore. These stories concern the origin and nature of the world, the lives and activities ...
,
Zeus
Zeus or , , ; grc, Δῐός, ''Diós'', label= genitive Boeotian Aeolic and Laconian grc-dor, Δεύς, Deús ; grc, Δέος, ''Déos'', label= genitive el, Δίας, ''Días'' () is the sky and thunder god in ancient Greek reli ...
places his son born by a mortal woman, the infant
Heracles
Heracles ( ; grc-gre, Ἡρακλῆς, , glory/fame of Hera), born Alcaeus (, ''Alkaios'') or Alcides (, ''Alkeidēs''), was a divine hero in Greek mythology, the son of Zeus and Alcmene, and the foster son of Amphitryon.By his adoptiv ...
, on Hera's breast while she is asleep so the baby will drink her divine milk and thus become immortal. Hera wakes up while breastfeeding and then realizes she is nursing an unknown baby: she pushes the baby away, some of her milk spills, and it produces the band of light known as the Milky Way.
In the astronomical literature, the capitalized word "Galaxy" is often used to refer to the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy, to distinguish it from the other galaxies in the observable
universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
. The English term ''Milky Way'' can be traced back to a story by
Chaucer
Geoffrey Chaucer (; – 25 October 1400) was an English poet, author, and civil servant best known for '' The Canterbury Tales''. He has been called the "father of English literature", or, alternatively, the "father of English poetry". He w ...
:
Galaxies were initially discovered telescopically and were known as '' spiral nebulae''. Most 18th- to 19th-century astronomers considered them as either unresolved star clusters or anagalactic nebulae, and were just thought of as a part of the Milky Way, but their true composition and natures remained a mystery. Observations using larger telescopes of a few nearby bright galaxies, like the
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
, began resolving them into huge conglomerations of stars, but based simply on the apparent faintness and sheer population of stars, the true distances of these objects placed them well beyond the Milky Way. For this reason they were popularly called ''island universes'', but this term quickly fell into disuse, as the word ''universe'' implied the entirety of existence. Instead, they became known simply as galaxies.
Nomenclature
Tens of thousands of galaxies have been catalogued, but only a few have well-established names, such as the
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
, the
Magellanic Clouds
The Magellanic Clouds (''Magellanic system'' or ''Nubeculae Magellani'') are two irregular dwarf galaxies in the southern celestial hemisphere. Orbiting the Milky Way galaxy, these satellite galaxies are members of the Local Group. Because bo ...
, the
Whirlpool Galaxy
The Whirlpool Galaxy, also known as Messier 51a, M51a, and NGC 5194, is an interacting grand-design spiral galaxy with a Seyfert 2 active galactic nucleus.
It lies in the constellation Canes Venatici, and was the first galaxy to be classifie ...
, and the
Sombrero Galaxy
The Sombrero Galaxy (also known as Messier Object 104, M104 or NGC 4594) is a peculiar galaxy of unclear classification in the constellation borders of Virgo and Corvus, being about from the Milky Way galaxy. It is a member of the Virgo II Grou ...
. Astronomers work with numbers from certain catalogues, such as the
Messier catalogue
The Messier objects are a set of 110 astronomical objects catalogued by the French astronomer Charles Messier in his ''Catalogue des Nébuleuses et des Amas d'Étoiles'' (''Catalogue of Nebulae and Star Clusters'').
Because Messier was only in ...
Index Catalogue
The ''New General Catalogue of Nebulae and Clusters of Stars'' (abbreviated NGC) is an astronomical catalogue of deep-sky objects compiled by John Louis Emil Dreyer in 1888. The NGC contains 7,840 objects, including galaxies, star clusters an ...
), the CGCG (
Catalogue of Galaxies and of Clusters of Galaxies
The Catalogue of Galaxies and of Clusters of Galaxies (or CGCG) was compiled by Fritz Zwicky in 1961–68. It contains 29,418 galaxies and 9,134 galaxy clusters.
Gallery
File:I Zwicky 18a.jpg, I Zwicky 18
File:Galaxy I Zwicky 32.jpeg, I Zwicky 3 ...
), the MCG (
Morphological Catalogue of Galaxies
The Morphological Catalogue of Galaxies (MCG) or Morfologiceskij Katalog Galaktik, is a Russian catalogue of 30,642 galaxies compiled by Boris Vorontsov-Velyaminov
Boris Aleksandrovich Vorontsov-Velyaminov (russian: Борис Александ ...
), the UGC (
Uppsala General Catalogue
The Uppsala General Catalogue of Galaxies (UGC) is a catalogue of 12,921 galaxies visible from the northern hemisphere. It was first published in 1973.
The catalogue includes essentially all galaxies north of declination -02°30' and to a limitin ...
of Galaxies), and the PGC (
Catalogue of Principal Galaxies
The Catalogue of Principal Galaxies (PGC) is an astronomical catalog published in 1989 that lists B1950 and J2000 equatorial coordinates and cross-identifications for 73,197 galaxies. It is based on the Lyon-Meudon Extragalactic Database (LED ...
, also known as LEDA). All the well-known galaxies appear in one or more of these catalogs but each time under a different number.
For example,
Messier 109
Messier 109 (also known as NGC 3992) is a barred spiral galaxy exhibiting a weak inner ring structure around the central bar approximately away in the northern constellation Ursa Major. M109 can be seen south-east of the star Phecda (γ UMa, Gam ...
(or "M109") is a spiral galaxy having the number 109 in the catalog of Messier. It also has the designations NGC 3992, UGC 6937, CGCG 269-023, MCG +09-20-044, and PGC 37617 (or LEDA 37617). Millions of fainter galaxies are known by their identifiers in sky surveys such as the Sloan Digital Sky Survey, in which M109 is cataloged as SDSS J115735.97+532228.9.
Observation history
The realization that ''we live in a galaxy that is one among many'' parallels major discoveries about the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
Greek
Greek may refer to:
Greece
Anything of, from, or related to Greece, a country in Southern Europe:
*Greeks, an ethnic group.
*Greek language, a branch of the Indo-European language family.
**Proto-Greek language, the assumed last common ancestor ...
philosopher
Democritus
Democritus (; el, Δημόκριτος, ''Dēmókritos'', meaning "chosen of the people"; – ) was an Ancient Greek pre-Socratic philosopher from Abdera, primarily remembered today for his formulation of an atomic theory of the universe. No ...
(450–370 BCE) proposed that the bright band on the night sky known as the Milky Way might consist of distant stars.
Aristotle
Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ph ...
(384–322 BCE), however, believed the Milky Way was caused by "the ignition of the fiery exhalation of some stars that were large, numerous and close together" and that the "ignition takes place in the upper part of the atmosphere, in the region of the World that is continuous with the heavenly motions."
Neoplatonist
Neoplatonism is a strand of Platonic philosophy that emerged in the 3rd century AD against the background of Hellenistic philosophy and religion. The term does not encapsulate a set of ideas as much as a chain of thinkers. But there are some id ...
philosopher
Olympiodorus the Younger
Olympiodorus the Younger ( el, Ὀλυμπιόδωρος ὁ Νεώτερος; c. 495 – 570) was a Neoplatonist philosopher, astrologer and teacher who lived in the early years of the Byzantine Empire, after Justinian's Decree of 529 AD which c ...
(–570 CE) was critical of this view, arguing that if the Milky Way was
sublunary In Aristotelian physics and Greek astronomy, the sublunary sphere is the region of the geocentric cosmos below the Moon, consisting of the four classical elements: earth, water, air, and fire.
The sublunary sphere was the realm of changing nature. ...
(situated between Earth and the Moon) it should appear different at different times and places on Earth, and that it should have parallax, which it did not. In his view, the Milky Way was celestial.
According to Mohani Mohamed, Arabian astronomer Alhazen (965–1037) made the first attempt at observing and measuring the Milky Way's parallax, and he thus "determined that because the Milky Way had no parallax, it must be remote from the Earth, not belonging to the atmosphere."
Persian
Persian may refer to:
* People and things from Iran, historically called ''Persia'' in the English language
** Persians, the majority ethnic group in Iran, not to be conflated with the Iranic peoples
** Persian language, an Iranian language of the ...
astronomer
al-Bīrūnī
Abu Rayhan Muhammad ibn Ahmad al-Biruni (973 – after 1050) commonly known as al-Biruni, was a Khwarazmian Iranian in scholar and polymath during the Islamic Golden Age. He has been called variously the "founder of Indology", "Father of Co ...
(973–1048) proposed the Milky Way galaxy was "a collection of countless fragments of the nature of nebulous stars." Andalusian astronomer
Ibn Bâjjah
Abū Bakr Muḥammad ibn Yaḥyà ibn aṣ-Ṣā’igh at-Tūjībī ibn Bājja ( ar, أبو بكر محمد بن يحيى بن الصائغ التجيبي بن باجة), best known by his Latinised name Avempace (; – 1138), was an A ...
("Avempace", 1138) proposed that it was composed of many stars that almost touched one another, and appeared to be a continuous image due to the effect of
refraction
In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
from sublunary material, citing his observation of the
conjunction
Conjunction may refer to:
* Conjunction (grammar), a part of speech
* Logical conjunction, a mathematical operator
** Conjunction introduction, a rule of inference of propositional logic
* Conjunction (astronomy), in which two astronomical bodies ...
of Jupiter and Mars as evidence of this occurring when two objects were near. In the 14th century, Syrian-born
Ibn Qayyim
Shams al-Dīn Abū ʿAbd Allāh Muḥammad ibn Abī Bakr ibn Ayyūb al-Zurʿī l-Dimashqī l-Ḥanbalī (29 January 1292–15 September 1350 CE / 691 AH–751 AH), commonly known as Ibn Qayyim al-Jawziyya ("The son of the principal of he school ...
proposed the Milky Way galaxy was "a myriad of tiny stars packed together in the sphere of the fixed stars."
Actual proof of the Milky Way consisting of many stars came in 1610 when the Italian astronomer
Galileo Galilei
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He wa ...
used a
telescope
A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
to study it and discovered it was composed of a huge number of faint stars.
In 1750, English astronomer Thomas Wright, in his ''An Original Theory or New Hypothesis of the Universe'', correctly speculated that it might be a rotating body of a huge number of stars held together by gravitational forces, akin to the
Solar System
The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
but on a much larger scale, and that the resulting disk of stars could be seen as a band on the sky from a perspective inside it. In his 1755 treatise,
Immanuel Kant
Immanuel Kant (, , ; 22 April 1724 – 12 February 1804) was a German philosopher and one of the central Enlightenment thinkers. Born in Königsberg, Kant's comprehensive and systematic works in epistemology, metaphysics, ethics, and ...
elaborated on Wright's idea about the Milky Way's structure.
The first project to describe the shape of the Milky Way and the position of the Sun was undertaken by
William Herschel
Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline ...
in 1785 by counting the number of stars in different regions of the sky. He produced a diagram of the shape of the galaxy with the Solar System close to the center. Using a refined approach, Kapteyn in 1920 arrived at the picture of a small (diameter about 15 kiloparsecs) ellipsoid galaxy with the Sun close to the center. A different method by
Harlow Shapley
Harlow Shapley (November 2, 1885 – October 20, 1972) was an American scientist, head of the Harvard College Observatory (1921–1952), and political activist during the latter New Deal and Fair Deal.
Shapley used Cepheid variable stars to estim ...
based on the cataloguing of
globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
s led to a radically different picture: a flat disk with diameter approximately 70 kiloparsecs and the Sun far from the center. Both analyses failed to take into account the absorption of light by
interstellar dust
Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
present in the
galactic plane
The galactic plane is the plane on which the majority of a disk-shaped galaxy's mass lies. The directions perpendicular to the galactic plane point to the galactic poles. In actual usage, the terms ''galactic plane'' and ''galactic poles'' usual ...
; but after
Robert Julius Trumpler
Robert Julius Trumpler (until 1915 Robert Trümpler, born October 2, 1886 in Zürich, Switzerland; died September 10, 1956 in Berkeley, United States) was a Swiss-American astronomer.
Career
After initial schooling, Trumpler entered the Univers ...
quantified this effect in 1930 by studying
open cluster
An open cluster is a type of star cluster made of up to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, an ...
s, the present picture of the Milky Way galaxy emerged.
Distinction from other nebulae
A few galaxies outside the Milky Way are visible on a dark night to the
unaided eye
Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection. Vision corrected to normal ...
, including the
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
Triangulum Galaxy
The Triangulum Galaxy is a spiral galaxy 2.73 million light-years (ly) from Earth in the constellation Triangulum. It is catalogued as Messier 33 or NGC (''New General Catalogue)'' 598. With the D25 isophotal diameter of , the Triangulum Ga ...
. In the 10th century, Persian astronomer
Al-Sufi
ʿAbd al-Rahman al-Sufi ( fa, عبدالرحمن صوفی; December 7, 903 – May 25, 986) was an iranianRobert Harry van Gent. Biography of al-Sūfī'. "The Persian astronomer Abū al-Husayn ‘Abd al-Rahmān ibn ‘Umar al-Sūfī was born in ...
made the earliest recorded identification of the Andromeda Galaxy, describing it as a "small cloud". In 964, he probably mentioned the Large Magellanic Cloud in his ''
Book of Fixed Stars
The ''Book of Fixed Stars'' ( ar, كتاب صور الكواكب ', literally ''The Book of the Shapes of Stars'') is an astronomical text written by Abd al-Rahman al-Sufi (Azophi) around 964. Following the translation movement in the 9th centu ...
'' (referring to "Al Bakr of the southern Arabs", since at a declination of about 70° south it was not visible where he lived); it was not well known to Europeans until
Magellan
Ferdinand Magellan ( or ; pt, Fernão de Magalhães, ; es, link=no, Fernando de Magallanes, ; 4 February 1480 – 27 April 1521) was a Portuguese explorer. He is best known for having planned and led the 1519 Spanish expedition to the East ...
's voyage in the 16th century. The Andromeda Galaxy was later independently noted by
Simon Marius
Simon Marius ( latinized form of Simon Mayr; 10 January 1573 – 5 January 1625) was a German astronomer. He was born in Gunzenhausen, near Nuremberg, but spent most of his life in the city of Ansbach. He is most known for being among the first ...
in 1612.
In 1734, philosopher
Emanuel Swedenborg
Emanuel Swedenborg (, ; born Emanuel Swedberg; 29 March 1772) was a Swedish pluralistic-Christian theologian, scientist, philosopher and mystic. He became best known for his book on the afterlife, ''Heaven and Hell'' (1758).
Swedenborg had a ...
in his ''Principia'' speculated that there might be other galaxies outside that were formed into galactic clusters that were minuscule parts of the universe that extended far beyond what could be seen. These views "are remarkably close to the present-day views of the cosmos."
In 1745,
Pierre Louis Maupertuis
Pierre Louis Moreau de Maupertuis (; ; 1698 – 27 July 1759) was a French mathematician, philosopher and man of letters. He became the Director of the Académie des Sciences, and the first President of the Prussian Academy of Science, at the ...
conjectured that some nebula-like objects were collections of stars with unique properties, including a glow exceeding the light its stars produced on their own, and repeated
Johannes Hevelius
Johannes Hevelius
Some sources refer to Hevelius as Polish:
*
*
*
*
*
*
*
Some sources refer to Hevelius as German:
*
*
*
*
*of the Royal Society
* (in German also known as ''Hevel''; pl, Jan Heweliusz; – 28 January 1687) was a councillor ...
's view that the bright spots were massive and flattened due to their rotation.
In 1750, Thomas Wright correctly speculated that the Milky Way was a flattened disk of stars, and that some of the nebulae visible in the night sky might be separate Milky Ways.
Toward the end of the 18th century,
Charles Messier
Charles Messier (; 26 June 1730 – 12 April 1817) was a French astronomer. He published an astronomical catalogue consisting of 110 nebulae and star clusters, which came to be known as the ''Messier objects''. Messier's purpose ...
compiled a
catalog
Catalog or catalogue may refer to:
*Cataloging
**'emmy on the 'og
**in science and technology
***Library catalog, a catalog of books and other media
****Union catalog, a combined library catalog describing the collections of a number of libraries ...
containing the 109 brightest celestial objects having nebulous appearance. Subsequently, William Herschel assembled a catalog of 5,000 nebulae. In 1845, Lord Rosse constructed a new telescope and was able to distinguish between elliptical and spiral nebulae. He also managed to make out individual point sources in some of these nebulae, lending credence to Kant's earlier conjecture.
In 1912,
Vesto Slipher
Vesto Melvin Slipher (; November 11, 1875 – November 8, 1969) was an American astronomer who performed the first measurements of radial velocities for galaxies. He was the first to discover that distant galaxies are redshifted, thus providing t ...
made spectrographic studies of the brightest spiral nebulae to determine their composition. Slipher discovered that the spiral nebulae have high Doppler shifts, indicating that they are moving at a rate exceeding the velocity of the stars he had measured. He found that the majority of these nebulae are moving away from us.
In 1917,
Heber Curtis
Heber Doust Curtis (June 27, 1872 – January 9, 1942) was an American astronomer. He participated in 11 expeditions for the study of solar eclipses, and, as an advocate and theorist that additional galaxies existed outside of the Milky Way, wa ...
observed nova S Andromedae within the "Great Andromeda Nebula" (as the Andromeda Galaxy,
Messier object
The Messier objects are a set of 110 astronomical objects catalogued by the French astronomer Charles Messier in his ''Catalogue des Nébuleuses et des Amas d'Étoiles'' (''Catalogue of Nebulae and Star Clusters'').
Because Messier was only in ...
M31, was then known). Searching the photographic record, he found 11 more novae. Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within this galaxy. As a result, he was able to come up with a distance estimate of 150,000
parsec
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
s. He became a proponent of the so-called "island universes" hypothesis, which holds that spiral nebulae are actually independent galaxies.
In 1920 a debate took place between
Harlow Shapley
Harlow Shapley (November 2, 1885 – October 20, 1972) was an American scientist, head of the Harvard College Observatory (1921–1952), and political activist during the latter New Deal and Fair Deal.
Shapley used Cepheid variable stars to estim ...
and
Heber Curtis
Heber Doust Curtis (June 27, 1872 – January 9, 1942) was an American astronomer. He participated in 11 expeditions for the study of solar eclipses, and, as an advocate and theorist that additional galaxies existed outside of the Milky Way, wa ...
(the Great Debate), concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim that the Great Andromeda Nebula is an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in the Milky Way, as well as the significant Doppler shift.
In 1922, the
Estonia
Estonia, formally the Republic of Estonia, is a country by the Baltic Sea in Northern Europe. It is bordered to the north by the Gulf of Finland across from Finland, to the west by the sea across from Sweden, to the south by Latvia, a ...
n astronomer
Ernst Öpik
Ernst Julius Öpik ( – 10 September 1985) was an Estonian astronomer and astrophysicist who spent the second half of his career (1948–1981) at the Armagh Observatory in Northern Ireland.
Education
Öpik was born in Kunda, Lääne-Viru, Go ...
gave a distance determination that supported the theory that the Andromeda Nebula is indeed a distant extra-galactic object. Using the new 100-inch Mt. Wilson telescope, Edwin Hubble was able to resolve the outer parts of some spiral nebulae as collections of individual stars and identified some
Cepheid variable
A Cepheid variable () is a type of star that pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude.
A strong direct relationship between a Cepheid vari ...
s, thus allowing him to estimate the distance to the nebulae: they were far too distant to be part of the Milky Way. In 1936 Hubble produced a classification of galactic morphology that is used to this day.
Modern research
In 1944,
Hendrik van de Hulst
Hendrik Christoffel "Henk" van de Hulst (19 November 1918 – 31 July 2000) was a Dutch astronomer and mathematician.
In 1944, while a student in Utrecht, he predicted the existence of the 21 cm hyperfine line of neutral interstellar hydrogen. ...
predicted that
microwave
Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
radiation with wavelength of 21 cm would be detectable from interstellar atomic
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
gas; and in 1951 it was observed. This radiation is not affected by dust absorption, and so its Doppler shift can be used to map the motion of the gas in this galaxy. These observations led to the hypothesis of a rotating bar structure in the center of this galaxy. With improved radio telescopes, hydrogen gas could also be traced in other galaxies.
In the 1970s,
Vera Rubin
Vera Florence Cooper Rubin (; July 23, 1928 – December 25, 2016) was an American astronomer who pioneered work on galaxy rotation rates. She uncovered the discrepancy between the predicted and observed angular motion of galaxies by study ...
uncovered a discrepancy between observed galactic
rotation speed
Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc.
The symbol for ...
and that predicted by the visible mass of stars and gas. Today, the galaxy rotation problem is thought to be explained by the presence of large quantities of unseen
dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
.
Beginning in the 1990s, the
Hubble Space Telescope
The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
yielded improved observations. Among other things, its data helped establish that the missing dark matter in this galaxy could not consist solely of inherently faint and small stars. The
Hubble Deep Field
The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the ...
, an extremely long exposure of a relatively empty part of the sky, provided evidence that there are about 125 billion () galaxies in the observable universe. Improved technology in detecting the spectra invisible to humans (radio telescopes, infrared cameras, and
x-ray telescopes
An X-ray telescope (XRT) is a telescope that is designed to observe remote objects in the X-ray spectrum. In order to get above the Earth's atmosphere, which is opaque to X-rays, X-ray telescopes must be mounted on high altitude rockets, balloon ...
) allows detection of other galaxies that are not detected by Hubble. Particularly, surveys in the
Zone of Avoidance
The Zone of Avoidance (ZOA, ZoA), or Zone of Galactic Obscuration (ZGO), is the area of the sky that is obscured by the Milky Way.
The Zone of Avoidance was originally called the Zone of Few Nebulae in an 1878 paper by English astronomer Richard ...
(the region of sky blocked at visible-light wavelengths by the Milky Way) have revealed a number of new galaxies.
A 2016 study published in ''
The Astrophysical Journal
''The Astrophysical Journal'', often abbreviated ''ApJ'' (pronounced "ap jay") in references and speech, is a peer-reviewed scientific journal of astrophysics and astronomy, established in 1895 by American astronomers George Ellery Hale and ...
,'' led by
Christopher Conselice
Christopher J. Conselice is an astrophysicist who is Professor of Extragalactic Astronomy at the University of Manchester.
Background
Conselice grew up in Neptune Beach, Florida and graduated from Stanton College Preparatory School. Conselice ...
of the
University of Nottingham
, mottoeng = A city is built on wisdom
, established = 1798 – teacher training college1881 – University College Nottingham1948 – university status
, type = Public
, chancellor ...
, used 20 years of Hubble images to estimate that the observable universe contained at least two trillion () galaxies. However, later observations with the New Horizons space probe from outside the
zodiacal light
The zodiacal light (also called false dawn when seen before sunrise) is a faint glow of diffuse sunlight scattered by interplanetary dust. Brighter around the Sun, it appears in a particularly dark night sky to extend from the Sun's direction ...
reduced this to roughly 200 billion ().
Types and morphology
Galaxies come in three main types: ellipticals, spirals, and irregulars. A slightly more extensive description of galaxy types based on their appearance is given by the
Hubble sequence
The Hubble sequence is a morphological classification scheme for galaxies invented by Edwin Hubble in 1926. It is often colloquially known as the Hubble tuning-fork diagram because the shape in which it is traditionally represented resembles a t ...
. Since the Hubble sequence is entirely based upon visual morphological type (shape), it may miss certain important characteristics of galaxies such as star formation rate in
starburst galaxies
A starburst galaxy is one undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formatio ...
and activity in the cores of
active galaxies
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not pr ...
.
Ellipticals
The Hubble classification system rates elliptical galaxies on the basis of their ellipticity, ranging from E0, being nearly spherical, up to E7, which is highly elongated. These galaxies have an ellipsoidal profile, giving them an elliptical appearance regardless of the viewing angle. Their appearance shows little structure and they typically have relatively little
interstellar matter
In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar ...
. Consequently, these galaxies also have a low portion of
open cluster
An open cluster is a type of star cluster made of up to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, an ...
s and a reduced rate of new star formation. Instead, they are dominated by generally older, more evolved stars that are orbiting the common center of gravity in random directions. The stars contain low abundances of heavy elements because star formation ceases after the initial burst. In this sense they have some similarity to the much smaller
globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
s.
Type-cD galaxies
The largest galaxies are the type-cD galaxies.
First described in 1964 by a paper by Thomas A. Matthews and others, they are a subtype of the more general class of D galaxies, which are giant elliptical galaxies, except that they are much larger. They are popularly known as the supergiant elliptical galaxies and constitute the largest and most luminous galaxies known. These galaxies feature a central elliptical nucleus with an extensive, faint halo of stars extending to megaparsec scales. The profile of their surface brightnesses as a function of their radius (or distance from their cores) falls off more slowly than their smaller counterparts.
The formation of these cD galaxies remains an active area of research, but the leading model is that they are the result of the mergers of smaller galaxies in the environments of dense clusters, or even those outside of clusters with random overdensities. These processes are the mechanisms that drive the formation of fossil groups or fossil clusters, where a large, relatively isolated, supergiant elliptical resides in the middle of the cluster and are surrounded by an extensive cloud of X-rays as the residue of these galactic collisions. Another older model posits the phenomenon of
cooling flow A cooling flow occurs according to the theory that the intracluster medium (ICM) in the centres of galaxy clusters should be rapidly cooling at the rate of tens to thousands of solar masses per year. This should happen as the ICM (a plasma) is quic ...
, where the heated gases in clusters collapses towards their centers as they cool, forming stars in the process, a phenomenon observed in clusters such as Perseus, and more recently in the
Phoenix Cluster
The Phoenix Cluster (SPT-CL J2344-4243) is a massive, Abell class type I galaxy cluster located at its namesake, southern constellation of Phoenix. It was initially detected in 2010 during a 2,500 square degree survey of the southern sky using t ...
.
Shell galaxy
A shell galaxy is a type of elliptical galaxy where the stars in its halo are arranged in concentric shells. About one-tenth of elliptical galaxies have a shell-like structure, which has never been observed in spiral galaxies. These structures are thought to develop when a larger galaxy absorbs a smaller companion galaxy—that as the two galaxy centers approach, they start to oscillate around a center point, and the oscillation creates gravitational ripples forming the shells of stars, similar to ripples spreading on water. For example, galaxy NGC 3923 has over 20 shells.
Spirals
Spiral galaxies resemble spiraling pinwheels. Though the stars and other visible material contained in such a galaxy lie mostly on a plane, the majority of mass in spiral galaxies exists in a roughly spherical halo of
dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
which extends beyond the visible component, as demonstrated by the universal rotation curve concept.
Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the
bulge
__NOTOC__
Bulge may refer to:
Astronomy and geography
*Bulge (astronomy), a tightly packed group of stars at the center of a spiral galaxy
*Equatorial bulge, a bulge around the equator of a planet due to rotation
* Tharsis bulge, vast volcanic pl ...
are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type ''S'', followed by a letter (''a'', ''b'', or ''c'') which indicates the degree of tightness of the spiral arms and the size of the central bulge. An ''Sa'' galaxy has tightly wound, poorly defined arms and possesses a relatively large core region. At the other extreme, an ''Sc'' galaxy has open, well-defined arms and a small core region. A galaxy with poorly defined arms is sometimes referred to as a
flocculent spiral galaxy
A flocculent spiral galaxy is a type of spiral galaxy. Unlike the well-defined spiral architecture of a grand design spiral galaxy, flocculent (meaning "flaky") galaxies are patchy, with discontinuous spiral arm
Spiral galaxies form a ...
; in contrast to the
grand design spiral galaxy
A grand design spiral galaxy is a type of spiral galaxy with prominent and well-defined spiral arms, as opposed to multi-arm and flocculent spirals which have subtler structural features. The spiral arms of a grand design galaxy extend clearly a ...
that has prominent and well-defined spiral arms. The speed in which a galaxy rotates is thought to correlate with the flatness of the disc as some spiral galaxies have thick bulges, while others are thin and dense.
In spiral galaxies, the spiral arms do have the shape of approximate
logarithmic spiral
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie"). More ...
s, a pattern that can be theoretically shown to result from a disturbance in a uniformly rotating mass of stars. Like the stars, the spiral arms rotate around the center, but they do so with constant angular velocity. The spiral arms are thought to be areas of high-density matter, or " density waves". As stars move through an arm, the space velocity of each stellar system is modified by the gravitational force of the higher density. (The velocity returns to normal after the stars depart on the other side of the arm.) This effect is akin to a "wave" of slowdowns moving along a highway full of moving cars. The arms are visible because the high density facilitates star formation, and therefore they harbor many bright and young stars.
Barred spiral galaxy
A majority of spiral galaxies, including the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galaxy, have a linear, bar-shaped band of stars that extends outward to either side of the core, then merges into the spiral arm structure. In the Hubble classification scheme, these are designated by an ''SB'', followed by a lower-case letter (''a'', ''b'' or ''c'') which indicates the form of the spiral arms (in the same manner as the categorization of normal spiral galaxies). Bars are thought to be temporary structures that can occur as a result of a density wave radiating outward from the core, or else due to a tidal interaction with another galaxy. Many barred spiral galaxies are active, possibly as a result of gas being channeled into the core along the arms.
Our own galaxy, the
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, is a large disk-shaped barred-spiral galaxy about 30 kiloparsecs in diameter and a kiloparsec thick. It contains about two hundred billion (2×1011) stars and has a total mass of about six hundred billion (6×1011) times the mass of the Sun.
Super-luminous spiral
Recently, researchers described galaxies called super-luminous spirals. They are very large with an upward diameter of 437,000 light-years (compared to the Milky Way's 87,400 light-year diameter). With a mass of 340 billion solar masses, they generate a significant amount of ultraviolet and mid-infrared light. They are thought to have an increased star formation rate around 30 times faster than the Milky Way.
Other morphologies
*
Peculiar galaxies
A peculiar galaxy is a galaxy of unusual size, shape, or composition. Between five and ten percent of known galaxies are categorized as peculiar. Astronomers have identified two types of peculiar galaxies: ''interacting galaxies'' and ''active g ...
are galactic formations that develop unusual properties due to tidal interactions with other galaxies.
** A
ring galaxy
A ring galaxy is a galaxy with a circle-like appearance. Hoag's Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. The ring contains many massive, relatively young blue stars, which are extremely bright. The central region co ...
has a ring-like structure of stars and interstellar medium surrounding a bare core. A ring galaxy is thought to occur when a smaller galaxy passes through the core of a spiral galaxy. Such an event may have affected the
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
, as it displays a multi-ring-like structure when viewed in
infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
radiation.
* A
lenticular galaxy
A lenticular galaxy (denoted S0) is a type of galaxy intermediate between an elliptical (denoted E) and a spiral galaxy in galaxy morphological classification schemes. It contains a large-scale disc but does not have large-scale spiral arms. ...
is an intermediate form that has properties of both elliptical and spiral galaxies. These are categorized as Hubble type S0, and they possess ill-defined spiral arms with an elliptical halo of stars (
barred lenticular galaxies
A lenticular galaxy (denoted S0) is a type of galaxy intermediate between an elliptical (denoted E) and a spiral galaxy in galaxy morphological classification schemes. It contains a large-scale disc but does not have large-scale spiral arms. ...
receive Hubble classification SB0.)
*
Irregular galaxies
An irregular galaxy is a galaxy that does not have a distinct regular shape, unlike a spiral or an elliptical galaxy. Irregular galaxies do not fall into any of the regular classes of the Hubble sequence, and they are often chaotic in appearance, ...
are galaxies that can not be readily classified into an elliptical or spiral morphology.
** An Irr-I galaxy has some structure but does not align cleanly with the Hubble classification scheme.
** Irr-II galaxies do not possess any structure that resembles a Hubble classification, and may have been disrupted. Nearby examples of (dwarf) irregular galaxies include the
Magellanic Clouds
The Magellanic Clouds (''Magellanic system'' or ''Nubeculae Magellani'') are two irregular dwarf galaxies in the southern celestial hemisphere. Orbiting the Milky Way galaxy, these satellite galaxies are members of the Local Group. Because bo ...
.
* An
ultra diffuse galaxy
An ultra diffuse galaxy (UDG) is an extremely low luminosity galaxy, the first example of which was discovered in the nearby Virgo Cluster by Allan Sandage and Bruno Binggeli in 1984. These galaxies have been studied for many years prior to their ...
(UDG) is an extremely-low-density galaxy. It may be the same size as the Milky Way, but have a visible star count only one percent of the Milky Way's. Its lack of luminosity is due to a lack of star-forming gas, resulting in old stellar populations.
Dwarfs
Despite the prominence of large elliptical and spiral galaxies, most galaxies are dwarf galaxies. They are relatively small when compared with other galactic formations, being about one hundredth the size of the Milky Way, with only a few billion stars. Ultra-compact dwarf galaxies have recently been discovered that are only 100 parsecs across.
Many dwarf galaxies may orbit a single larger galaxy; the Milky Way has at least a dozen such satellites, with an estimated 300–500 yet to be discovered. Dwarf galaxies may also be classified as
elliptical
Elliptical may mean:
* having the shape of an ellipse, or more broadly, any oval shape
** in botany, having an elliptic leaf shape
** of aircraft wings, having an elliptical planform
* characterised by ellipsis (the omission of words), or by conc ...
, spiral, or irregular. Since small dwarf ellipticals bear little resemblance to large ellipticals, they are often called dwarf spheroidal galaxies instead.
A study of 27 Milky Way neighbors found that in all dwarf galaxies, the central mass is approximately 10 million solar masses, regardless of whether it has thousands or millions of stars. This suggests that galaxies are largely formed by
dark matter
Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
, and that the minimum size may indicate a form of
warm dark matter
Warm dark matter (WDM) is a hypothesized form of dark matter that has properties intermediate between those of hot dark matter and cold dark matter, causing structure formation to occur bottom-up from above their free-streaming scale, and top-dow ...
incapable of gravitational coalescence on a smaller scale.
Other types of galaxies
Interacting
Interactions between galaxies are relatively frequent, and they can play an important role in
galactic evolution
The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have gen ...
. Near misses between galaxies result in warping distortions due to
tidal interactions
The tidal force is a gravitational effect that stretches a body along the line towards the center of mass of another body due to a gradient (difference in strength) in gravitational field from the other body; it is responsible for diverse phenomen ...
, and may cause some exchange of gas and dust.
Collisions occur when two galaxies pass directly through each other and have sufficient relative momentum not to merge. The stars of interacting galaxies usually do not collide, but the gas and dust within the two forms interacts, sometimes triggering star formation. A collision can severely distort the galaxies' shapes, forming bars, rings or tail-like structures.
At the extreme of interactions are galactic mergers, where the galaxies' relative momentums are insufficient to allow them to pass through each other. Instead, they gradually merge to form a single, larger galaxy. Mergers can result in significant changes to the galaxies' original morphology. If one of the galaxies is much more massive than the other, the result is known as cannibalism, where the more massive larger galaxy remains relatively undisturbed, and the smaller one is torn apart. The Milky Way galaxy is currently in the process of cannibalizing the
Sagittarius Dwarf Elliptical Galaxy
The Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph), also known as the Sagittarius Dwarf Elliptical Galaxy (Sgr dE or Sag DEG), is an elliptical loop-shaped satellite galaxy of the Milky Way. It contains four globular clusters in ...
and the
Canis Major Dwarf Galaxy
The Canis Major Overdensity (''CMa Overdensity'') or Canis Major Dwarf Galaxy (''CMa Dwarf'') is a disputed dwarf irregular galaxy in the Local Group, located in the same part of the sky as the constellation Canis Major.
The supposed small gal ...
.
Starburst
Stars are created within galaxies from a reserve of cold gas that forms giant
molecular cloud
A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydroge ...
s. Some galaxies have been observed to form stars at an exceptional rate, which is known as a ''starburst''. If they continue to do so, they would consume their reserve of gas in a time span less than the galaxy's lifespan. Hence starburst activity usually lasts only about ten million years, a relatively brief period in a galaxy's history. Starburst galaxies were more common during the universe's early history, but still contribute an estimated 15% to total star production.
Starburst galaxies are characterized by dusty concentrations of gas and the appearance of newly formed stars, including massive stars that ionize the surrounding clouds to create
H II region
An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds ...
s. These stars produce supernova explosions, creating expanding
remnants
Remnant or remnants may refer to:
Religion
* Remnant (Bible), a recurring theme in the Bible
* Remnant (Seventh-day Adventist belief), the remnant theme in the Seventh-day Adventist Church
* ''The Remnant'' (newspaper), a traditional Catholic ne ...
that interact powerfully with the surrounding gas. These outbursts trigger a chain reaction of star-building that spreads throughout the gaseous region. Only when the available gas is nearly consumed or dispersed does the activity end.
Starbursts are often associated with merging or interacting galaxies. The prototype example of such a starburst-forming interaction is M82, which experienced a close encounter with the larger M81. Irregular galaxies often exhibit spaced knots of starburst activity.
Radio galaxy
A
radio galaxy
A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039 W at radio wav ...
is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its
active galactic nucleus
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
. Radio galaxies are classified according to their Fanaroff–Riley (FR) classifications. The FR I class are a minority class – low-luminosity sources exhibiting structures usually known as ''plumes'' which are much more elongated. The FR II class are by far the most common, exhibiting large-scale structures are called ''lobes'': these are double, often fairly symmetrical, roughly ellipsoidal structures placed on either side of the active nucleus.
Radio galaxies can also be classified as giant radio galaxies (GRGs), whose radio emissions can extend to scales of megaparsecs (3.26 million light-years). Alcyoneus is an FR II class low-excitation radio galaxy which has the largest observed radio emission, with lobed structures spanning 5
megaparsecs
The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
(16×106ly). For comparison, another similarly sized giant radio galaxy is
3C 236
3C 236 is a Fanaroff and Riley Class II (FR II) radio galaxy. It is among the largest known radio galaxies, with the radio structure having a total linear size in excess of 4.5 Mpc (15 million light years). The galaxy features a "double-double ...
, with lobes 15 million light-years across. It should however be noted that radio emissions are ''not'' always considered part of the main galaxy itself, and is usually not used as a standard in measuring the physical diameter of a galaxy. For insight on how physical diameters of galaxies are measured, see section ''Physical diameters'' below.
A giant radio galaxy is a special class of objects characterized by the presence of radio lobes generated by
relativistic jets
An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets be ...
powered by the central galaxy's
supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
. Giant radio galaxies are different from ordinary radio galaxies in that they can extend to much larger scales, reaching upwards to several megaparsecs across, far larger than the diameters of their host galaxies.
Active galaxy
Some observable galaxies are classified as "active" if they contain an active galactic nucleus (AGN). A significant portion of the galaxy's total energy output is emitted by the active nucleus instead of its stars, dust and interstellar medium. There are multiple classification and naming schemes for AGNs, but those in the lower ranges of luminosity are called
Seyfert galaxies
Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei (very luminous, distant and bright sources of electromagnetic radiation) with very high surface brightnesses whose spectra ...
, while those with luminosities much greater than that of the host galaxy are known as quasi-stellar objects or quasars. AGNs emit radiation throughout the
electromagnetic spectrum
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.
The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
from radio wavelengths to X-rays, though some of it may be absorbed by dust or gas associated with the AGN itself or with the host galaxy.
The standard model for an
active galactic nucleus
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not prod ...
is based on an
accretion disc
An accretion disk is a structure (often a circumstellar disk) formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other ...
that forms around a
supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
(SMBH) at the galaxy's core region. The radiation from an active galactic nucleus results from the
gravitational energy
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (conver ...
of matter as it falls toward the black hole from the disc. The AGN's luminosity depends on the SMBH's mass and the rate at which matter falls onto it.
In about 10% of these galaxies, a diametrically opposed pair of energetic jets ejects particles from the galaxy core at velocities close to the
speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. The mechanism for producing these jets is not well understood.
Blazars
Blazar
A blazar is an active galactic nucleus (AGN) with a relativistic jet (a jet composed of ionized matter traveling at nearly the speed of light) directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the ...
s are believed to be active galaxies with a relativistic jet pointed in the direction of Earth. A
radio galaxy
A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039 W at radio wav ...
emits radio frequencies from relativistic jets. A unified model of these types of active galaxies explains their differences based on the observer's position.
LINERs
Possibly related to active galactic nuclei (as well as starburst regions) are
low-ionization nuclear emission-line region
A low-ionization nuclear emission-line region (LINER) is a type of galactic nucleus that is defined by its spectral line emission. The spectra typically include line emission from weakly ionized or neutral atoms, such as O, O+, N+, and S+. ...
s (LINERs). The emission from LINER-type galaxies is dominated by weakly
ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
ized elements. The excitation sources for the weakly ionized lines include post- AGB stars, AGN, and shocks. Approximately one-third of nearby galaxies are classified as containing LINER nuclei.
Seyfert galaxy
Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei (very luminous, distant and bright sources of electromagnetic radiation) with very high surface brightnesses; but unlike quasars, their host galaxies are clearly detectable. Seyfert galaxies account for about 10% of all galaxies. Seen in visible light, most look like normal spiral galaxies; but when studied under other wavelengths, their cores' luminosity is equivalent to the luminosity of whole galaxies the size of the Milky Way.
Quasar
Quasars (/ˈkweɪzɑr/) or quasi-stellar radio sources, are the most energetic and distant members of active galactic nuclei. Extremely luminous, they were first identified as high redshift sources of electromagnetic energy, including radio waves and visible light, that appeared more similar to stars than to extended sources similar to galaxies. Their luminosity can be 100 times that of the Milky Way.
Luminous infrared galaxy
Luminous infrared galaxies (LIRGs) are galaxies with luminosities—the measurement of electromagnetic power output—above 1011 L☉ (solar luminosities). In most cases, most of their energy comes from large numbers of young stars which heat surrounding dust, which reradiates the energy in the infrared. Luminosity high enough to be a LIRG requires a star formation rate of at least 18 M☉ yr−1. Ultra-luminous infrared galaxies (ULIRGs) are at least ten times more luminous still and form stars at rates >180 M☉ yr−1. Many LIRGs also emit radiation from an AGN. Infrared galaxies emit more energy in the infrared than all other wavelengths combined, with peak emission typically at wavelengths of 60 to 100 microns. LIRGs are uncommon in the local universe but were much more common when the universe was younger.
Physical diameters
Galaxies do not have a definite boundary by their nature, and are characterized by a gradually decreasing stellar density as a function of increasing distance from their center, making measurements of their true extents difficult. Nevertheless, astronomers over the past few decades have made several criteria in defining the sizes of galaxies. As early as the time of Edwin Hubble in 1936, there have been attempts to characterize the diameters of galaxies. With the advent of large sky surveys in the second half of the 20th century, the need for a standard for accurate determination of galaxy sizes has been in greater demand due to its enormous implications in astrophysics, such as the accurate determination of the
Hubble constant
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving ...
. Various standards have been adapted over the decades, some more preferred than others. Below are some of these examples.
Isophotal diameter
The ''isophotal diameter'' is introduced as a conventional way of measuring a galaxy's size based on its apparent surface brightness.
Isophote
In geometry, an isophote is a curve on an illuminated surface that connects points of equal brightness. One supposes that the illumination is done by parallel light and the brightness is measured by the following scalar product:
:b(P)= \vec n(P) ...
s are curves in a diagram - such as a picture of a galaxy - that adjoins points of equal brightnesses, and are useful in defining the extent of the galaxy. The apparent brightness flux of a galaxy is measured in units of magnitudes per square arcsecond (mag/arcsec2; sometimes expressed as ''mag arcsec−2''), which defines the brightness depth of the isophote. To illustrate how this unit works, a typical galaxy has a brightness flux of 18 mag/arcsec2 at its central region. This brightness is equivalent to the light of an 18th magnitude hypothetical point object (like a star) being spread out evenly in a one square arcsecond area of the sky. /ref> For the purposes of objectivity, the spectrum of light being used is sometimes also given in figures. As an example, the Milky Way has an average surface brightness of 22.1 B-mag/arcsec−2, where ''B-mag'' refers to the brightness at the Jhk, B-band (445 nm wavelength of light, in the blue part of the visible spectrum).
R.O. Redman in 1936 suggested that the diameters of galaxies (then referred to as "elliptical nebulae") should be defined at the 25.0 mag/arcsec2 isophote at the Jhk, B-band, which is expected to cover much of the galaxy's light profile. This isophote then became known simply as D25 (short for "diameter 25"), and corresponds to at least 10% of the normal brightness of the night sky, which is very near the limitations of blue filters at that time. This method was particularly used during the creation of the
Uppsala General Catalogue
The Uppsala General Catalogue of Galaxies (UGC) is a catalogue of 12,921 galaxies visible from the northern hemisphere. It was first published in 1973.
The catalogue includes essentially all galaxies north of declination -02°30' and to a limitin ...
using blue filters from the Palomar Observatory Sky Survey in 1972.
This conventional standard, however, is not universally agreed upon. Erik Holmberg in 1958 measured the diameters of at least 300 galaxies at the isophote of about 26.5 mag/arcsec2 (originally defined as where the photographic brightness density with respect to plate background is 0.5%). Various other surveys such that of the
ESO
The European Organisation for Astronomical Research in the Southern Hemisphere, commonly referred to as the European Southern Observatory (ESO), is an intergovernmental research organisation made up of 16 member states for ground-based ast ...
in 1989 use isophotes as faint as 27.0 mag/arcsec2. Nevertheless, corrections of these diameters were introduced by both the Second and Third Reference Catalogue of Galaxies (RC2 and RC3), at least to those galaxies being covered by the two catalogues.
Examples of isophotal diameter measurements:
* Large Magellanic Cloud - at the 25.0 B-mag/arcsec2 isophote.
*
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
- has a diameter at the 25.0 B-mag/arcsec2 isophote of .
*
Messier 87
Messier 87 (also known as Virgo A or NGC 4486, generally abbreviated to M87) is a supergiant elliptical galaxy with several trillion stars in the constellation Virgo. One of the largest and most massive galaxies in the local ...
- has a has a diameter at the 25.0 B-mag/arcsec2 isophote of .
*
Andromeda Galaxy
The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gal ...
- has a has a diameter at the 25.0 B-mag/arcsec2 isophote of .
Effective radius (half-light) and its variations
The
half-light radius
Galaxy effective radius or half-light radius (R_e) is the radius at which half of the total light of a galaxy is emitted. This assumes the galaxy has either intrinsic circular symmetry, spherical symmetry or is at least circularly symmetric as vie ...
(also known as ''effective radius''; R''e'') is a measure that is based on the galaxy's overall brightness flux. This is the radius upon which half, or 50%, of the total brightness flux of the galaxy was emitted. This was first proposed by
Gérard de Vaucouleurs
Gérard Henri de Vaucouleurs (25 April 1918 – 7 October 1995) was a French astronomer.
Life and career
Born in Paris, he had an early interest in amateur astronomy and received his undergraduate degree in 1939 at the Sorbonne in that city. ...
in 1948. The choice of using 50% was arbitrary, but proved to be useful in further works by R. A. Fish in 1963, where he established a luminosity concentration law that relates the brightnesses of elliptical galaxies and their respective R''e'', and by J.L. Sérsic in 1968 that defined a mass-radius relation in galaxies.
In defining R''e'', it is necessary that the overall brightness flux galaxy should be captured, with a method employed by Bershady in 2000 suggesting to measure twice the size where the brightness flux of an arbitrarily chosen radius, defined as the local flux, divided by the overall average flux equals to 0.2. Using half-light radius allows a rough estimate of a galaxy's size, but is not particularly helpful in determining its morphology.
Variations of this method exist. In particular, in the ESO-Uppsala Catalogue of Galaxies values of 50%, 70%, and 90% of the total blue light (the light detected through a B-band specific filter) had been used to calculate a galaxy's diameter.
Petrosian magnitude
First described by V. Petrosian in 1976, a modified version of this method has been used by the Sloan Digital Sky Survey (SDSS). This method employs a mathematical model on a galaxy whose radius is determined by the azimuthally (horizontal) averaged profile of its brightness flux. In particular, the SDSS employed the Petrosian magnitude in the R-band (658 nm, in the red part of the visible spectrum) to ensure that the brightness flux of a galaxy would be captured as much as possible while counteracting the effects of background noise. For a galaxy whose brightness profile is exponential, it is expected to capture all of its brightness flux, and 80% for galaxies that follow a profile under de Vaucouleurs's law.
Petrosian magnitudes have the advantage that it is redshift and distance independent, allowing the measurement of the galaxy's apparent size since the Petrosian radius is defined in terms of the galaxy's overall luminous flux.
A critique of an earlier version of this method has been issued by IPAC, with the method causing a magnitude of error (upwards to 10%) of the values than using isophotal diameter. The use of Petrosian magnitudes also have the disadvantage of missing most of the light outside the Petrosian aperture, which is defined relative to the galaxy's overall brightness profile, especially for elliptical galaxies, with higher signal-to-noise ratios on higher distances and redshifts. A correction for this method has been issued by Graham ''et al.'' in 2005, based on the assumption that galaxies follow Sersic's law.
Near-infrared method
This method has been used by
2MASS
The Two Micron All-Sky Survey, or 2MASS, was an astronomical survey of the whole sky in infrared light. It took place between 1997 and 2001, in two different locations: at the U.S. Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona, and ...
as an adaptation from the previously used methods of isophotal measurement. Since 2MASS operates in the near infrared, which has the advantage of being able to recognize dimmer, cooler, and older stars, it has a different form of approach compared to other methods that normally use B-filter. The detail of the method used by 2MASS has been described thoroughly in a document by Jarrett ''et al.'', with the survey measuring several parameters.
The standard aperture ellipse (area of detection) is defined by the infrared isophote at the Ks band (roughly 2.2 μm wavelength) of 20 mag/arcsec2. Gathering the overall luminous flux of the galaxy has been employed by at least four methods: the first being a circular aperture extending 7 arcseconds from the center, an isophote at 20 mag/arcsec2, a "total" aperture defined by the radial light distribution that covers the supposed extent of the galaxy, and the Kron aperture (defined as 2.5 times the first-moment radius, an integration of the flux of the "total" aperture).
Properties
Magnetic fields
Galaxies have magnetic fields of their own. They are strong enough to be dynamically important, as they:
* Drive mass inflow into the centers of galaxies
* Modify the formation of spiral arms
* Can affect the rotation of gas in the galaxies' outer regions
* Provide the transport of angular momentum required for the collapse of gas clouds, and hence the formation of new stars
The typical average equipartition strength for
spiral galaxies
Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae''microgauss) or 1nT (
nanotesla
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI).
One tesla is equal to one weber per square metre. The unit was announced during the General Conferenc ...
). By comparison, the Earth's magnetic field has an average strength of about 0.3 G (Gauss or 30 μT (
microtesla
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI).
One tesla is equal to one weber per square metre. The unit was announced during the General Confer ...
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
's neighbors, have weaker fields (about 5μG), while gas-rich galaxies with high star-formation rates, like M 51, M 83 and NGC 6946, have 15 μG on average. In prominent spiral arms, the field strength can be up to 25 μG, in regions where cold gas and dust are also concentrated. The strongest total equipartition fields (50–100 μG) were found in
starburst galaxies
A starburst galaxy is one undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formatio ...
—for example, in M 82 and the Antennae; and in nuclear starburst regions, such as the centers of NGC 1097 and other barred galaxies.
Formation and evolution
Galactic formation and evolution is an active area of research in astrophysics.
Formation
Current models of the formation of galaxies in the early universe are based on the
ΛCDM
The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda ( Greek Λ) associated w ...
model. About 300,000 years after the big bang, atoms of
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
began to form, in an event called recombination. Nearly all the hydrogen was neutral (non-ionized) and readily absorbed light, and no stars had yet formed. As a result, this period has been called the " dark ages". It was from density fluctuations (or anisotropic irregularities) in this primordial matter that larger structures began to appear. As a result, masses of
baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
ic matter started to condense within cold dark matter halos. These primordial structures eventually became the galaxies we see today.
Early galaxy formation
Evidence for the appearance of galaxies very early in the Universe's history was found in 2006, when it was discovered that the galaxy
IOK-1
IOK-1 is a distant galaxy in the constellation Coma Berenices. When discovered in 2006, it was the oldest and most distant galaxy ever found, at redshift 6.96.
It was discovered in April 2006 by Masanori Iye at National Astronomical Observ ...
has an unusually high redshift of 6.96, corresponding to just 750 million years after the Big Bang and making it the most distant and earliest-to-form galaxy seen at that time.
While some scientists have claimed other objects (such as
Abell 1835 IR1916
Abell 1835 IR1916 (also known as Abell 1835, Galaxy Abell 1835, Galaxy Abell 1835 IR1916, or simply The Abell) was a candidate for being the most distant galaxy ever observed, although that claim has not been verified by additional observations. ...
) have higher redshifts (and therefore are seen in an earlier stage of the universe's evolution), IOK-1's age and composition have been more reliably established. In December 2012, astronomers reported that
UDFj-39546284
__NOTOC__
UDFj-39546284 is a high- redshift Lyman-break galaxy discovered by the Hubble Space Telescope in infrared Hubble Ultra-Deep Field (HUDF) observations in 2009. The object, located in the Fornax constellation, was identified by G. Illi ...
is the most distant object known and has a redshift value of 11.9. The object, estimated to have existed around 380 million years after the Big Bang (which was about 13.8 billion years ago), is about 13.42 billion light travel distance years away. The existence of galaxies so soon after the Big Bang suggests that protogalaxies must have grown in the so-called "dark ages". As of May 5, 2015, the galaxy
EGS-zs8-1
EGS-zs8-1 is a Redshift#Extragalactic observations, high-redshift Lyman-break galaxy found at the northern constellation of Boötes. In May 2015, EGS-zs8-1 had the highest spectroscopic redshift of any known galaxy, meaning EGS-zs8-1 was the most ...
is the most distant and earliest galaxy measured, forming 670 million years after the Big Bang. The light from EGS-zs8-1 has taken 13 billion years to reach Earth, and is now 30 billion light-years away, because of the expansion of the universe during 13 billion years. On 17 August 2022, NASA released a large mosaic image of 690 individual frames taken by the
Near Infrared Camera
NIRCam (Near-InfraRed Camera) is an instrument aboard the James Webb Space Telescope. It has two major tasks, as an imager from 0.6 to 5 micron wavelength, and as a wavefront sensor to keep the 18-section mirrors functioning as one. In other wor ...
(NIRCam) on the James Webb Space Telescope (JWST) of numerous very early galaxies. Some early galaxies observed by JWST, like
CEERS-93316
CEERS-93316 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 16.4, corresponding to 236 million years after the Big Bang.
If confirmed, it would be one of the earliest and most distant known galaxies observe ...
, a candidate high-redshift galaxy, has an estimated redshift of approximately z = 16.7, corresponding to 235.8 million years after the Big Bang.
The detailed process by which the earliest galaxies formed is an open question in astrophysics. Theories can be divided into two categories: top-down and bottom-up. In top-down correlations (such as the Eggen–Lynden-Bell–Sandage LSmodel), protogalaxies form in a large-scale simultaneous collapse lasting about one hundred million years. In bottom-up theories (such as the Searle-Zinn Zmodel), small structures such as
globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
s form first, and then a number of such bodies accrete to form a larger galaxy.
Once protogalaxies began to form and contract, the first
halo star
Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae''Population III stars
During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations.
In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926:
Baade noticed th ...
) appeared within them. These were composed almost entirely of hydrogen and helium and may have been more massive than 100 times the Sun's mass. If so, these huge stars would have quickly consumed their supply of fuel and became supernovae, releasing heavy elements into the interstellar medium. This first generation of stars re-ionized the surrounding neutral hydrogen, creating expanding bubbles of space through which light could readily travel.
In June 2015, astronomers reported evidence for
Population III stars
During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations.
In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926:
Baade noticed th ...
in the
Cosmos Redshift 7
Cosmos Redshift 7 (also known as COSMOS Redshift 7, Galaxy Cosmos Redshift 7, Galaxy CR7 or CR7) is a high-redshift Lyman-alpha emitter galaxy. At a redshift z = 6.6, the galaxy is observed as it was about 800 million years after the Big Bang, ...
galaxy at . Such stars are likely to have existed in the very early universe (i.e., at high redshift), and may have started the production of
chemical element
A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s heavier than
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
that are needed for the later formation of planets and life as we know it.
Evolution
Within a billion years of a galaxy's formation, key structures begin to appear.
Globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of membe ...
s, the central supermassive black hole, and a
galactic bulge
In astronomy, a galactic bulge (or simply bulge) is a tightly packed group of stars within a larger star formation. The term almost exclusively refers to the central group of stars found in most spiral galaxies (see galactic spheroid). Bulges ...
of metal-poor Population II stars form. The creation of a supermassive black hole appears to play a key role in actively regulating the growth of galaxies by limiting the total amount of additional matter added. During this early epoch, galaxies undergo a major burst of star formation.
During the following two billion years, the accumulated matter settles into a
galactic disc
A galactic disc (or galactic disk) is a component of disc galaxies, such as spiral galaxies and lenticular galaxies. Galactic discs consist of a stellar component (composed of most of the galaxy's stars) and a gaseous component (mostly composed ...
. A galaxy will continue to absorb infalling material from
high-velocity cloud
High-velocity clouds (HVCs) are large collections of gas found throughout the galactic halo of the Milky Way. Their bulk motions in the local standard of rest have velocities which are measured in excess of 70–90 km s−1. These clouds of ...
s and
dwarf galaxies
A dwarf galaxy is a small galaxy composed of about 1000 up to several billion stars, as compared to the Milky Way's 200–400 billion stars. The Large Magellanic Cloud, which closely orbits the Milky Way and contains over 30 billion stars, is so ...
throughout its life. This matter is mostly hydrogen and helium. The cycle of stellar birth and death slowly increases the abundance of heavy elements, eventually allowing the
formation
Formation may refer to:
Linguistics
* Back-formation, the process of creating a new lexeme by removing or affixes
* Word formation, the creation of a new word by adding affixes
Mathematics and science
* Cave formation or speleothem, a secondar ...
of
planet
A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s.
The evolution of galaxies can be significantly affected by interactions and collisions. Mergers of galaxies were common during the early epoch, and the majority of galaxies were peculiar in morphology. Given the distances between the stars, the great majority of stellar systems in colliding galaxies will be unaffected. However, gravitational stripping of the interstellar gas and dust that makes up the spiral arms produces a long train of stars known as tidal tails. Examples of these formations can be seen in
NGC 4676
NGC 4676, or the Mice Galaxies, are two spiral galaxies in the constellation Coma Berenices. About 290 million light-years distant, they have begun the process of colliding and merging. Their name refers to the long tails produced by tidal acti ...
or the
Antennae Galaxies
The Antennae Galaxies (also known as NGC 4038/NGC 4039 or Caldwell 60/Caldwell 61) are a pair of interacting galaxies in the constellation Corvus. They are currently going through a starburst phase, in which the collision of clouds of gas and du ...
.
The Milky Way galaxy and the nearby Andromeda Galaxy are moving toward each other at about 130
km/s
The metre per second is the unit of both speed (a scalar quantity) and velocity (a vector quantity, which has direction and magnitude) in the International System of Units (SI), equal to the speed of a body covering a distance of one metre in a ...
, and—depending upon the lateral movements—the two might collide in about five to six billion years. Although the Milky Way has never collided with a galaxy as large as Andromeda before, evidence of past collisions of the Milky Way with smaller dwarf galaxies is increasing.
Such large-scale interactions are rare. As time passes, mergers of two systems of equal size become less common. Most bright galaxies have remained fundamentally unchanged for the last few billion years, and the net rate of star formation probably also peaked about ten billion years ago.
Future trends
Spiral galaxies, like the Milky Way, produce new generations of stars as long as they have dense
molecular cloud
A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydroge ...
s of interstellar hydrogen in their spiral arms. Elliptical galaxies are largely devoid of this gas, and so form few new stars. The supply of star-forming material is finite; once stars have converted the available supply of hydrogen into heavier elements, new star formation will come to an end.
The current era of star formation is expected to continue for up to one hundred billion years, and then the "stellar age" will wind down after about ten trillion to one hundred trillion years (1013–1014 years), as the smallest, longest-lived stars in the visible universe, tiny red dwarfs, begin to fade. At the end of the stellar age, galaxies will be composed of compact objects:
brown dwarf
Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s,
white dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s that are cooling or cold ("
black dwarf
A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer th ...
s"),
neutron star
A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, and black holes. Eventually, as a result of gravitational relaxation, all stars will either fall into central supermassive black holes or be flung into intergalactic space as a result of collisions.
Larger-scale structures
Deep-sky surveys show that galaxies are often found in groups and clusters. Solitary galaxies that have not significantly interacted with other galaxies of comparable mass in the past billion years are relatively scarce. Only about 5% of the galaxies surveyed are truly isolated; however, they may have interacted and even merged with other galaxies in the past, and may still be orbited by smaller satellite galaxies. Isolated galaxiesThe term "field galaxy" is sometimes used to mean an isolated galaxy, although the same term is also used to describe galaxies that do not belong to a cluster but may be a member of a group of galaxies. can produce stars at a higher rate than normal, as their gas is not being stripped by other nearby galaxies.
On the largest scale, the universe is continually expanding, resulting in an average increase in the separation between individual galaxies (see
Hubble's law
Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
). Associations of galaxies can overcome this expansion on a local scale through their mutual gravitational attraction. These associations formed early, as clumps of dark matter pulled their respective galaxies together. Nearby groups later merged to form larger-scale clusters. This ongoing merging process (as well as an influx of infalling gas) heats the intergalactic gas in a cluster to very high temperatures of 30–100
megakelvin
List of orders of magnitude for temperature
Detailed list for 100 K to 1000 K
Most ordinary human activity takes place at temperatures of this order of magnitude. Circumstances where water naturally occurs in liquid form are shown in light gre ...
s. About 70–80% of a cluster's mass is in the form of dark matter, with 10–30% consisting of this heated gas and the remaining few percent in the form of galaxies.
Most galaxies are gravitationally bound to a number of other galaxies. These form a fractal-like hierarchical distribution of clustered structures, with the smallest such associations being termed groups. A group of galaxies is the most common type of galactic cluster; these formations contain the majority of galaxies (as well as most of the
baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
ic mass) in the universe. To remain gravitationally bound to such a group, each member galaxy must have a sufficiently low velocity to prevent it from escaping (see
Virial theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. ...
). If there is insufficient
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
, however, the group may evolve into a smaller number of galaxies through mergers.
Clusters of galaxies consist of hundreds to thousands of galaxies bound together by gravity. Clusters of galaxies are often dominated by a single giant elliptical galaxy, known as the
brightest cluster galaxy
A brightest cluster galaxy (BCG) is defined as the brightest galaxy in a cluster of galaxies. BCGs include the most massive galaxies in the universe. They are generally elliptical galaxies which lie close to the geometric and kinematical center ...
, which, over time, tidally destroys its satellite galaxies and adds their mass to its own.
Superclusters contain tens of thousands of galaxies, which are found in clusters, groups and sometimes individually. At the supercluster scale, galaxies are arranged into sheets and filaments surrounding vast empty voids. Above this scale, the universe appears to be the same in all directions ( isotropic and homogeneous)., though this notion has been challenged in recent years by numerous findings of large-scale structures that appear to be exceeding this scale. The
Hercules–Corona Borealis Great Wall
The Hercules–Corona Borealis Great Wall or simply the Great Wall is the largest known structure in the observable universe, measuring approximately 10 billion light-years in length (the observable universe is about 93 billion light-years in di ...
, currently the List of largest cosmic structures, largest structure in the universe found so far, is 10 billion light-years (three gigaparsecs) in length.
The Milky Way galaxy is a member of an association named the
Local Group
The Local Group is the galaxy group that includes the Milky Way.
It has a total diameter of roughly , and a total mass of the order of .
It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
, a relatively small group of galaxies that has a diameter of approximately one megaparsec. The Milky Way and the Andromeda Galaxy are the two brightest galaxies within the group; many of the other member galaxies are dwarf companions of these two. The Local Group itself is a part of a cloud-like structure within the
Virgo Supercluster
The Virgo Supercluster (Virgo SC) or the Local Supercluster (LSC or LS) is a mass concentration of galaxies containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least ...
, a large, extended structure of groups and clusters of galaxies centered on the Virgo Cluster. And the Virgo Supercluster itself is a part of the Pisces–Cetus Supercluster Complex, a giant galaxy filament.
Multi-wavelength observation
The peak radiation of most stars lies in the visible spectrum, so the observation of the stars that form galaxies has been a major component of optical astronomy. It is also a favorable portion of the spectrum for observing ionized
H II region
An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds ...
s, and for examining the distribution of dusty arms.
The
dust
Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ho ...
present in the interstellar medium is opaque to visual light. It is more transparent to far infrared astronomy, far-infrared, which can be used to observe the interior regions of giant molecular clouds and Bulge (astronomy), galactic cores in great detail. Infrared is also used to observe distant, redshift, red-shifted galaxies that were formed much earlier. Water vapor and carbon dioxide absorb a number of useful portions of the infrared spectrum, so high-altitude or space-based telescopes are used for infrared astronomy.
The first non-visual study of galaxies, particularly active galaxies, was made using radio astronomy, radio frequencies. The Earth's atmosphere is nearly transparent to radio between 5 Hertz, MHz and 30 GHz. (The ionosphere blocks signals below this range.) Large radio interferometry, interferometers have been used to map the active jets emitted from active nuclei. Radio telescopes can also be used to observe neutral hydrogen (via hydrogen line, 21 cm radiation), including, potentially, the non-ionized matter in the early universe that later collapsed to form galaxies.
UV astronomy, Ultraviolet and X-ray astronomy, X-ray telescopes can observe highly energetic galactic phenomena. Ultraviolet flares are sometimes observed when a star in a distant galaxy is torn apart from the tidal forces of a nearby black hole. The distribution of hot gas in galactic clusters can be mapped by X-rays. The existence of supermassive black holes at the cores of galaxies was confirmed through X-ray astronomy.
Gallery
File:Squabbling Galactic Siblings.jpg, Squabbling Galactic Siblings
File:Hubble Returns to Science Operations.jpg, LEFT: ARP-MADORE2115-273 is a rare example of an interacting galaxy pair in the southern hemisphere. RIGHT: ARP-MADORE0002-503 is a large spiral galaxy with unusual, extended spiral arms, at a distance of 490 million light-years.
File:NASA-HubbleLegacyFieldZoomOut-20190502.webm,
Hubble Legacy Field (50-second video)
See also
* Dark galaxy
* Galactic orientation
* Galaxy formation and evolution
* Illustris project
* List of galaxies
* List of nearest galaxies
* List of largest galaxies
* Luminous infrared galaxy
* Outline of galaxies
*
Supermassive black hole
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
* Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure
* UniverseMachine