Fixed-point Theory
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a fixed-point theorem is a result saying that a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms.


In mathematical analysis

The
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
(1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, the ...
(1911) is a non- constructive result: it says that any
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
from the closed
unit ball Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
in ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
to itself must have a fixed point, but it doesn't describe how to find the fixed point (see also
Sperner's lemma In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring (described below) of a triangulation of an ...
). For example, the
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
function is continuous in ��1, 1and maps it into ��1, 1 and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve ''y'' = cos(''x'') intersects the line ''y'' = ''x''. Numerically, the fixed point (known as the Dottie number) is approximately ''x'' = 0.73908513321516 (thus ''x'' = cos(''x'') for this value of ''x''). The
Lefschetz fixed-point theorem In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is name ...
(and the
Nielsen fixed-point theorem Nielsen theory is a branch of mathematical research with its origins in topological fixed-point theory. Its central ideas were developed by Danish mathematician Jakob Nielsen (mathematician), Jakob Nielsen, and bear his name. The theory developed ...
) from
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
is notable because it gives, in some sense, a way to count fixed points. There are a number of generalisations to
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
and further; these are applied in PDE theory. See
fixed-point theorems in infinite-dimensional spaces In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first res ...
. The collage theorem in
fractal compression Fractal compression is a lossy compression method for digital images, based on fractals. The method is best suited for textures and natural images, relying on the fact that parts of an image often resemble other parts of the same image. Fractal a ...
proves that, for many images, there exists a relatively small description of a function that, when iteratively applied to any starting image, rapidly converges on the desired image.


In algebra and discrete mathematics

The
Knaster–Tarski theorem In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after BronisÅ‚aw Knaster and Alfred Tarski, states the following: :''Let'' (''L'', ≤) ''be a complete lattice and let f : L → L be an order-preserving ...
states that any
order-preserving function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
on a
complete lattice In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum ( join) and an infimum ( meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For compariso ...
has a fixed point, and indeed a ''smallest'' fixed point. See also
Bourbaki–Witt theorem In mathematics, the Bourbaki–Witt theorem in order theory, named after Nicolas Bourbaki and Ernst Witt, is a basic fixed-point theorem for partially ordered sets. It states that if ''X'' is a non-empty chain complete poset, and f : X \to X suc ...
. The theorem has applications in
abstract interpretation In computer science, abstract interpretation is a theory of sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices. It can be viewed as a partial execution of a computer pro ...
, a form of
static program analysis In computer science, static program analysis (also known as static analysis or static simulation) is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs duri ...
. A common theme in
lambda calculus In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using var ...
is to find fixed points of given lambda expressions. Every lambda expression has a fixed point, and a
fixed-point combinator In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function (i.e., a function which takes a function as argument) that returns some '' fixed point'' (a value that is mapped to itself) of ...
is a "function" which takes as input a lambda expression and produces as output a fixed point of that expression. An important fixed-point combinator is the
Y combinator Y Combinator, LLC (YC) is an American technology startup accelerator and venture capital firm launched in March 2005 which has been used to launch more than 5,000 companies. The accelerator program started in Boston and Mountain View, Californi ...
used to give
recursive Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in m ...
definitions. In
denotational semantics In computer science, denotational semantics (initially known as mathematical semantics or Scott–Strachey semantics) is an approach of formalizing the meanings of programming languages by constructing mathematical objects (called ''denotations'' ...
of programming languages, a special case of the Knaster–Tarski theorem is used to establish the semantics of recursive definitions. While the fixed-point theorem is applied to the "same" function (from a logical point of view), the development of the theory is quite different. The same definition of recursive function can be given, in
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since ex ...
, by applying
Kleene's recursion theorem In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 ...
. These results are not equivalent theorems; the Knaster–Tarski theorem is a much stronger result than what is used in denotational semantics. However, in light of the Church–Turing thesis their intuitive meaning is the same: a recursive function can be described as the least fixed point of a certain functional, mapping functions to functions. The above technique of iterating a function to find a fixed point can also be used in
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
; the
fixed-point lemma for normal functions The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. Background and form ...
states that any continuous strictly increasing function from ordinals to ordinals has one (and indeed many) fixed points. Every
closure operator In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets ...
on a
poset In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
has many fixed points; these are the "closed elements" with respect to the closure operator, and they are the main reason the closure operator was defined in the first place. Every
involution Involution may refer to: Mathematics * Involution (mathematics), a function that is its own inverse * Involution algebra, a *-algebra: a type of algebraic structure * Involute, a construction in the differential geometry of curves * Exponentiati ...
on a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
with an odd number of elements has a fixed point; more generally, for every involution on a finite set of elements, the number of elements and the number of fixed points have the same parity.
Don Zagier Don Bernard Zagier (born 29 June 1951) is an American-German mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany. He was a professor at the ''Co ...
used these observations to give a one-sentence proof of
Fermat's theorem on sums of two squares In additive number theory, Pierre de Fermat, Fermat's theorem on sums of two squares states that an Even and odd numbers, odd prime number, prime ''p'' can be expressed as: :p = x^2 + y^2, with ''x'' and ''y'' integers, if and only if :p \equiv ...
, by describing two involutions on the same set of triples of integers, one of which can easily be shown to have only one fixed point and the other of which has a fixed point for each representation of a given prime (congruent to 1 mod 4) as a sum of two squares. Since the first involution has an odd number of fixed points, so does the second, and therefore there always exists a representation of the desired form..


List of fixed-point theorems

*
Atiyah–Bott fixed-point theorem In mathematics, the Atiyah–Bott fixed-point theorem, proven by Michael Atiyah and Raoul Bott in the 1960s, is a general form of the Lefschetz fixed-point theorem for smooth manifolds ''M'', which uses an elliptic complex on ''M''. This is a sys ...
*
Banach fixed-point theorem In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqu ...
* Bekić's theorem * Borel fixed-point theorem *
Bourbaki–Witt theorem In mathematics, the Bourbaki–Witt theorem in order theory, named after Nicolas Bourbaki and Ernst Witt, is a basic fixed-point theorem for partially ordered sets. It states that if ''X'' is a non-empty chain complete poset, and f : X \to X suc ...
* Browder fixed-point theorem *
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after Luitzen Egbertus Jan Brouwer, L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a nonempty compactness, compact convex set to itself, the ...
* Rothe's fixed-point theorem * Caristi fixed-point theorem *
Diagonal lemma In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories. A particular instance of the diagonal ...
, also known as the fixed-point lemma, for producing self-referential sentences of
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
* Lawvere's fixed-point theorem * Discrete fixed-point theorems * Earle-Hamilton fixed-point theorem *
Fixed-point combinator In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function (i.e., a function which takes a function as argument) that returns some '' fixed point'' (a value that is mapped to itself) of ...
, which shows that every term in untyped
lambda calculus In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using var ...
has a fixed point *
Fixed-point lemma for normal functions The fixed-point lemma for normal functions is a basic result in axiomatic set theory stating that any normal function has arbitrarily large fixed points (Levy 1979: p. 117). It was first proved by Oswald Veblen in 1908. Background and form ...
* Fixed-point property *
Fixed-point theorems in infinite-dimensional spaces In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first res ...
*
Injective metric space In metric geometry, an injective metric space, or equivalently a hyperconvex metric space, is a metric space with certain properties generalizing those of the real line and of L∞ distances in higher- dimensional vector spaces. These properties c ...
*
Kakutani fixed-point theorem In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed poi ...
*
Kleene fixed-point theorem In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following: :Kleene Fixed-Point Theorem. Suppose (L, \sqsubseteq) is a directed-complete pa ...
*
Knaster–Tarski theorem In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: :''Let'' (''L'', ≤) ''be a complete lattice and let f : L → L be an order-preserving ...
*
Lefschetz fixed-point theorem In mathematics, the Lefschetz fixed-point theorem is a formula that counts the fixed points of a continuous mapping from a compact topological space X to itself by means of traces of the induced mappings on the homology groups of X. It is name ...
*
Nielsen fixed-point theorem Nielsen theory is a branch of mathematical research with its origins in topological fixed-point theory. Its central ideas were developed by Danish mathematician Jakob Nielsen (mathematician), Jakob Nielsen, and bear his name. The theory developed ...
* Poincaré–Birkhoff theorem proves the existence of two fixed points * Ryll-Nardzewski fixed-point theorem * Schauder fixed-point theorem * Topological degree theory * Tychonoff fixed-point theorem


See also

* Trace formula


Footnotes


References

* * * * * * * *


External links


Fixed Point Method
{{Authority control Closure operators Iterative methods