HOME
*





Knaster–Tarski Theorem
In the mathematics, mathematical areas of order theory, order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: :''Let'' (''L'', ≤) ''be a complete lattice and let f : L → L be an Monotonic function#In order theory, monotonic function (w.r.t. ≤ ). Then the set (mathematics), set of fixed point (mathematics), fixed points of f in L also forms a complete lattice under ≤ .'' It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where ''L'' is the lattice (order), lattice of subsets of a set, the power set lattice. The theorem has important applications in formal semantics of programming languages and abstract interpretation. A kind of converse (logic), converse of this theorem was mathematical proof, proved by Anne C. Morel, Anne C. Davi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Upper Bound
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transfinite Induction
Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for all ordinals \alpha. Suppose that whenever P(\beta) is true for all \beta < \alpha, then P(\alpha) is also true. Then transfinite induction tells us that P is true for all ordinals. Usually the proof is broken down into three cases: * Zero case: Prove that P(0) is true. * Successor case: Prove that for any \alpha+1, P(\alpha+1) follows from P(\alpha) (and, if necessary, P(\beta) for all \beta < \alpha). * Limit case: Prove that for any

picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega that is greater than every natural number, along with ordinal numbers \omega + 1, \omega + 2, etc., which are even greater than \omega. A linear order such that every subset has a least element is called a well-order. The axiom of choice implies that every set can be well-ordered, and given two well-ordered sets, one is isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kleene Fixed-point Theorem
In the mathematical areas of order and lattice theory, the Kleene fixed-point theorem, named after American mathematician Stephen Cole Kleene, states the following: :Kleene Fixed-Point Theorem. Suppose (L, \sqsubseteq) is a directed-complete partial order (dcpo) with a least element, and let f: L \to L be a Scott-continuous (and therefore monotone) function. Then f has a least fixed point, which is the supremum of the ascending Kleene chain of f. The ascending Kleene chain of ''f'' is the chain :\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots \sqsubseteq f^n(\bot) \sqsubseteq \cdots obtained by iterating ''f'' on the least element ⊥ of ''L''. Expressed in a formula, the theorem states that :\textrm(f) = \sup \left(\left\\right) where \textrm denotes the least fixed point. Although Tarski's fixed point theorem does not consider how fixed points can be computed by iterating ''f'' from some seed (also, it pertains to monotone functions on complete la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Element
In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an element of S that is smaller than every other element of S. Definitions Let (P, \leq) be a preordered set and let S \subseteq P. An element g \in P is said to be if g \in S and if it also satisfies: :s \leq g for all s \in S. By using \,\geq\, instead of \,\leq\, in the above definition, the definition of a least element of S is obtained. Explicitly, an element l \in P is said to be if l \in S and if it also satisfies: :l \leq s for all s \in S. If (P, \leq) is even a partially ordered set then S can have at most one greatest element and it can have at most one least element. Whenever a greatest element of S exists and is unique then this element is called greatest element of S. The terminology least element of S is defined simila ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Greatest Fixpoint
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. For example, with the usual order on the real numbers, the least fixed point of the real function ''f''(''x'') = ''x''2 is ''x'' = 0 (since the only other fixed point is 1 and 0 < 1). In contrast, ''f''(''x'') = ''x'' + 1 has no fixed points at all, so has no least one, and ''f''(''x'') = ''x'' has infinitely many fixed points, but has no least one.


Examples

Let G = (V, A) be a and v be a vertex. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duality (order Theory)
In the mathematical area of order theory, every partially ordered set ''P'' gives rise to a dual (or opposite) partially ordered set which is often denoted by ''P''op or ''P''''d''. This dual order ''P''op is defined to be the same set, but with the inverse order, i.e. ''x'' ≤ ''y'' holds in ''P''op if and only if ''y'' ≤ ''x'' holds in ''P''. It is easy to see that this construction, which can be depicted by flipping the Hasse diagram for ''P'' upside down, will indeed yield a partially ordered set. In a broader sense, two partially ordered sets are also said to be duals if they are dually isomorphic, i.e. if one poset is order isomorphic to the dual of the other. The importance of this simple definition stems from the fact that every definition and theorem of order theory can readily be transferred to the dual order. Formally, this is captured by the Duality Principle for ordered sets: : If a given statement is valid for all partially ordered sets, then its dual statement, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Least Fixpoint
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. For example, with the usual order on the real numbers, the least fixed point of the real function ''f''(''x'') = ''x''2 is ''x'' = 0 (since the only other fixed point is 1 and 0 < 1). In contrast, ''f''(''x'') = ''x'' + 1 has no fixed points at all, so has no least one, and ''f''(''x'') = ''x'' has infinitely many fixed points, but has no least one.


Examples

Let G = (V, A) be a and v be a vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greatest Fixed Point
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. For example, with the usual order on the real numbers, the least fixed point of the real function ''f''(''x'') = ''x''2 is ''x'' = 0 (since the only other fixed point is 1 and 0 < 1). In contrast, ''f''(''x'') = ''x'' + 1 has no fixed points at all, so has no least one, and ''f''(''x'') = ''x'' has infinitely many fixed points, but has no least one.


Examples

Let G = (V, A) be a and v be a vertex. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]