Fragility (glass Physics)
   HOME

TheInfoList



OR:

In
glass physics Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) of ...
, fragility characterizes how rapidly the dynamics of a material slows down as it is cooled toward the
glass transition The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rubb ...
: materials with a higher fragility have a relatively narrow glass transition temperature range, while those with low fragility have a relatively broad glass transition temperature range. Physically, fragility may be related to the presence of dynamical heterogeneity in glasses, as well as to the breakdown of the usual Stokes–Einstein relationship between viscosity and diffusion.


Definition

Formally, fragility reflects the degree to which the temperature dependence of the viscosity (or relaxation time) deviates from Arrhenius behavior. This classification was originally proposed by
Austen Angell Charles Austen Angell (14 December 1933 – 12 March 2021) was a renowned Australian and American physical chemist known for his prolific and highly cited research on the chemistry and physics of glasses and glass-forming liquids. He was intern ...
. The most common definition of fragility is the "kinetic fragility index" ''m'', which characterizes the slope of the
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
(or relaxation time) of a material with temperature as it approaches the glass transition temperature from above: :=\left( \right) _ =\frac\left( \right) _ =\frac\left( \right) _ where \eta is viscosity, ''Tg'' is the glass transition temperature, ''m'' is fragility, and ''T'' is temperature. Glass-formers with a high fragility are called "fragile"; those with a low fragility are called "strong". For example, silica has a relatively low fragility and is called "strong", whereas some polymers have relatively high fragility and are called "fragile". Fragility has no direct relationship with the colloquial meaning of the word "fragility", which more closely relates to the
brittleness A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Bre ...
of a material. Several fragility parameters have been introduced to characterise the fragility of liquids, including the Bruning–Sutton, Avramov and Doremus fragility parameters. The Bruning–Sutton fragility parameter ''m'' relies on the curvature or slope of the viscosity curves. The Avramov fragility parameter α is based on a Kohlraush-type formula of viscosity derived for glasses: strong liquids have α ≈ 1 whereas liquids with higher α values become more fragile. Doremus indicated that practically all melts deviate from the Arrhenius behaviour, e.g. the activation energy of viscosity changes from a high QH at low temperature to a low QL at high temperature. However asymptotically both at low and high temperatures the activation energy of viscosity becomes constant, e.g. independent of temperature. Changes that occur in the activation energy are unambiguously characterised by the ratio between the two values of activation energy at low and high temperatures, which Doremus suggested could be used as a fragility criterion: RD=QH/QL. The higher RD, the more fragile are the liquids, Doremus’ fragility ratios range from 1.33 for germania to 7.26 for diopside melts. The Doremus’ criterion of fragility can be expressed in terms of thermodynamic parameters of the defects mediating viscous flow in the oxide melts: RD=1+Hd/Hm, where Hd is the enthalpy of formation and Hm is the enthalpy of motion of such defects. Hence the fragility of oxide melts is an intrinsic thermodynamic parameter of melts which can be determined unambiguously by experiment. The fragility can also be expressed analytically in terms of physical parameters that are related to the interatomic or intermolecular interaction potential. It is given as function of a parameter which measures the steepness of the interatomic or intermolecular repulsion, and as a function of the
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
coefficient of the liquid, which, instead, is related to the attractive part of the interatomic or intermolecular potential. The analysis of various systems (from
Lennard-Jones Sir John Edward Lennard-Jones (27 October 1894 – 1 November 1954) was a British mathematician and professor of theoretical physics at the University of Bristol, and then of theoretical science at the University of Cambridge. He was an imp ...
model liquids to metal alloys) has evidenced that a steeper interatomic repulsion leads to more fragile liquids, or, conversely, that ''soft atoms make strong liquids''. Recent
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
experiments showed a clear link between structure evolution of the supercooled liquid on cooling, for example, intensification of Ni-P and Cu-P peaks in the radial distribution function close to the glass-transition, and liquid fragility.


Physical implications

The physical origin of the non-Arrhenius behavior of fragile glass formers is an area of active investigation in glass physics. Advances over the last decade have linked this phenomenon with the presence of locally heterogeneous dynamics in fragile glass formers; i.e. the presence of distinct (if transient) slow and fast regions within the material. This effect has also been connected to the breakdown of the Stokes–Einstein relation between diffusion and viscosity in fragile liquids.


References

{{reflist Glass physics es:Fragilidad