Four-group
   HOME

TheInfoList



OR:

In mathematics, the Klein four-group is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal and vertical reflection and 180-degree rotation), as the group of bitwise
exclusive or Exclusive or or exclusive disjunction is a logical operation that is true if and only if its arguments differ (one is true, the other is false). It is symbolized by the prefix operator J and by the infix operators XOR ( or ), EOR, EXOR, , ...
operations on two-bit binary values, or more abstractly as , the direct product of two copies of the
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order 2. It was named ''Vierergruppe'' (meaning four-group) by
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
in 1884. It is also called the Klein group, and is often symbolized by the letter V or as K4. The Klein four-group, with four elements, is the smallest group that is not a
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
. There is only one other group of order four, up to
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
, the
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
of order 4. Both are
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s. The smallest non-abelian group is the
symmetric group of degree 3 In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3, or, in other words, the dihedral group of order 6. It is isomorphic to the symmetric group S3 of degree 3. It is also the smallest possible non-abeli ...
, which has order 6.


Presentations

The Klein group's
Cayley table Named after the 19th century British mathematician Arthur Cayley, a Cayley table describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplic ...
is given by: The Klein four-group is also defined by the
group presentation In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
:\mathrm = \left\langle a,b \mid a^2 = b^2 = (ab)^2 = e \right\rangle. All non-
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), ...
elements of the Klein group have order 2, thus any two non-identity elements can serve as generators in the above presentation. The Klein four-group is the smallest non-
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
. It is however an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
, and isomorphic to the
dihedral group In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ...
of order (cardinality) 4, i.e. D4 (or D2, using the geometric convention); other than the group of order 2, it is the only dihedral group that is abelian. The Klein four-group is also isomorphic to the direct sum , so that it can be represented as the pairs under component-wise addition modulo 2 (or equivalently the bit strings under
bitwise XOR In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operati ...
); with (0,0) being the group's identity element. The Klein four-group is thus an example of an elementary abelian 2-group, which is also called a
Boolean group In mathematics, specifically in group theory, an elementary abelian group (or elementary abelian ''p''-group) is an abelian group in which every nontrivial element has order ''p''. The number ''p'' must be prime, and the elementary abelian group ...
. The Klein four-group is thus also the group generated by the
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. Th ...
as the binary operation on the subsets of a powerset of a set with two elements, i.e. over a
field of sets In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed un ...
with four elements, e.g. \; the empty set is the group's identity element in this case. Another numerical construction of the Klein four-group is the set with the operation being multiplication modulo 8. Here ''a'' is 3, ''b'' is 5, and is . The Klein four-group has a representation as 2×2 real matrices with the operation being matrix multiplication: : e =\begin 1 & 0\\ 0 & 1 \end,\quad a = \begin 1 & 0\\ 0 & -1 \end,\quad b = \begin -1 & 0\\ 0 & 1 \end,\quad c = \begin -1 & 0\\ 0 & -1 \end On a Rubik's Cube the "4 dots" pattern can be made in three ways, depending on the pair of faces that are left blank; these three positions together with the "identity" or home position form an example of the Klein group.


Geometry

Geometrically, in two dimensions the Klein four-group is the symmetry group of a
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The ...
and of rectangles that are not
squares In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180 degree rotation. In three dimensions there are three different symmetry groups that are algebraically the Klein four-group V: *one with three perpendicular 2-fold rotation axes: D2 *one with a 2-fold rotation axis, and a perpendicular plane of reflection: *one with a 2-fold rotation axis in a plane of reflection (and hence also in a perpendicular plane of reflection): .


Permutation representation

The three elements of order two in the Klein four-group are interchangeable: the
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
of V is the group of permutations of these three elements. The Klein four-group's permutations of its own elements can be thought of abstractly as its
permutation representation In mathematics, the term permutation representation of a (typically finite) group G can refer to either of two closely related notions: a representation of G as a group of permutations, or as a group of permutation matrices. The term also refers ...
on four points: : V = In this representation, V is a normal subgroup of the
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic pr ...
A4 (and also the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
S4) on four letters. In fact, it is the
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
of a surjective
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) w ...
from S4 to S3. Other representations within S4 are: : : : They are not normal subgroups of S4.


Algebra

According to
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, the existence of the Klein four-group (and in particular, the permutation representation of it) explains the existence of the formula for calculating the roots of
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynomi ...
s in terms of radicals, as established by
Lodovico Ferrari Lodovico de Ferrari (2 February 1522 – 5 October 1565) was an Italian mathematician. Biography Born in Bologna, Lodovico's grandfather, Bartolomeo Ferrari, was forced out of Milan to Bologna. Lodovico settled in Bologna, and he began his ...
: the map corresponds to the resolvent cubic, in terms of
Lagrange resolvents In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group ''G'' is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial ''p'' and has, roughly speaking, a rati ...
. In the construction of
finite ring In mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite grou ...
s, eight of the eleven rings with four elements have the Klein four-group as their additive substructure. If R× denotes the multiplicative group of non-zero reals and R+ the multiplicative group of
positive reals In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used fo ...
, R× × R× is the group of units of the ring , and is a subgroup of (in fact it is the component of the identity of ). The quotient group is isomorphic to the Klein four-group. In a similar fashion, the group of units of the split-complex number ring, when divided by its identity component, also results in the Klein four-group.


Graph theory

The simplest
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
connected graph In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgrap ...
that admits the Klein four-group as its
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
is the
diamond graph In the mathematical field of graph theory, the diamond graph is a planar, undirected graph with 4 vertices and 5 edges. It consists of a complete graph minus one edge. The diamond graph has radius 1, diameter 2, girth 3, chroma ...
shown below. It is also the automorphism group of some other graphs that are simpler in the sense of having fewer entities. These include the graph with four vertices and one edge, which remains simple but loses connectivity, and the graph with two vertices connected to each other by two edges, which remains connected but loses simplicity.


Music

In
music composition Musical composition can refer to an original piece or work of music, either vocal or instrumental, the structure of a musical piece or to the process of creating or writing a new piece of music. People who create new compositions are called c ...
the four-group is the basic group of permutations in the
twelve-tone technique The twelve-tone technique—also known as dodecaphony, twelve-tone serialism, and (in British usage) twelve-note composition—is a method of musical composition first devised by Austrian composer Josef Matthias Hauer, who published his "law o ...
. In that instance the Cayley table is written; Babbitt, Milton. (1960) "Twelve-Tone Invariants as Compositional Determinants", ''Musical Quarterly'' 46(2):253 Special Issue: Problems of Modern Music: The Princeton Seminar in Advanced Musical Studies (April): 246–59,
Oxford University Press Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books ...


See also

*
Quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the group presentation :\mathrm_8 ...
*
List of small groups The following list in mathematics contains the finite groups of small order up to group isomorphism. Counts For ''n'' = 1, 2, … the number of nonisomorphic groups of order ''n'' is : 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5 ...


References


Further reading

* M. A. Armstrong (1988) ''Groups and Symmetry'', Springer Verlag, page 53 * W. E. Barnes (1963) ''Introduction to Abstract Algebra'', D.C. Heath & Co., page 20.


External links

* {{mathworld , urlname = Vierergruppe , title = Vierergruppe Finite groups