First Order Functions
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
and computer science, a higher-order function (HOF) is a function that does at least one of the following: * takes one or more functions as arguments (i.e. a
procedural parameter In computing, a procedural parameter is a parameter of a procedure that is itself a procedure. This concept is an extremely powerful and versatile programming tool, because it allows programmers to modify certain steps of a library procedure in ...
, which is a parameter of a
procedure Procedure may refer to: * Medical procedure * Instructions or recipes, a set of commands that show how to achieve some result, such as to prepare or make something * Procedure (business), specifying parts of a business process * Standard operat ...
that is itself a procedure), * returns a function as its result. All other functions are ''first-order functions''. In mathematics higher-order functions are also termed '' operators'' or '' functionals''. The
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and return ...
in calculus is a common example, since it maps a function to its derivative, also a function. Higher-order functions should not be confused with other uses of the word "functor" throughout mathematics, see
Functor (disambiguation) A functor, in mathematics, is a map between categories. Functor may also refer to: * Predicate functor in logic, a basic concept of predicate functor logic * Function word in linguistics * In computer programming: ** Functor (functional programmin ...
. In the untyped
lambda calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation ...
, all functions are higher-order; in a typed lambda calculus, from which most functional programming languages are derived, higher-order functions that take one function as argument are values with types of the form (\tau_1\to\tau_2)\to\tau_3.


General examples

* map function, found in many functional programming languages, is one example of a higher-order function. It takes as arguments a function ''f'' and a collection of elements, and as the result, returns a new collection with ''f'' applied to each element from the collection. * Sorting functions, which take a comparison function as a parameter, allowing the programmer to separate the sorting algorithm from the comparisons of the items being sorted. The C standard function qsort is an example of this. * filter *
fold Fold, folding or foldable may refer to: Arts, entertainment, and media * ''Fold'' (album), the debut release by Australian rock band Epicure *Fold (poker), in the game of poker, to discard one's hand and forfeit interest in the current pot *Above ...
*
apply In mathematics and computer science, apply is a function that applies a function to arguments. It is central to programming languages derived from lambda calculus, such as LISP and Scheme, and also in functional languages. It has a role in the s ...
*
Function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
*
Integration Integration may refer to: Biology *Multisensory integration *Path integration * Pre-integration complex, viral genetic material used to insert a viral genome into a host genome *DNA integration, by means of site-specific recombinase technology, ...
* Callback * Tree traversal *
Montague grammar __notoc__ Montague grammar is an approach to natural language semantics, named after American logician Richard Montague. The Montague grammar is based on mathematical logic, especially higher-order predicate logic and lambda calculus, and makes use ...
, a semantic theory of natural language, uses higher-order functions


Support in programming languages


Direct support

''The examples are not intended to compare and contrast programming languages, but to serve as examples of higher-order function syntax'' In the following examples, the higher-order function takes a function, and applies the function to some value twice. If has to be applied several times for the same it preferably should return a function rather than a value. This is in line with the "
don't repeat yourself "Don't repeat yourself" (DRY) is a principle of software development aimed at reducing repetition of software patterns, replacing it with abstractions or using data normalization to avoid redundancy. The DRY principle is stated as "Every piece o ...
" principle.


APL

twice← plusthree← g← g 7 13 Or in a tacit manner: twice←⍣2 plusthree←+∘3 g←plusthree twice g 7 13


C++

Using in C++11: #include #include auto twice = [](const std::function& f) ; auto plus_three = [](int i) ; int main() Or, with generic lambdas provided by C++14: #include auto twice = [](const auto& f) ; auto plus_three = [](int i) ; int main()


C#

Using just delegates: using System; public class Program Or equivalently, with static methods: using System; public class Program


Clojure

(defn twice (fn (f (f x)))) (defn plus-three (+ i 3)) (def g (twice plus-three)) (println (g 7)) ; 13


ColdFusion Markup Language (CFML)

twice = function(f) ; plusThree = function(i) ; g = twice(plusThree); writeOutput(g(7)); // 13


Common Lisp

(defun twice (f) (lambda (x) (funcall f (funcall f x)))) (defun plus-three (i) (+ i 3)) (defvar g (twice #'plus-three)) (print (funcall g 7))


D

import std.stdio : writeln; alias twice = (f) => (int x) => f(f(x)); alias plusThree = (int i) => i + 3; void main()


Dart

int Function(int) twice(int Function(int) f) int plusThree(int i) void main()


Elixir

In Elixir, you can mix module definitions and
anonymous function In computer programming, an anonymous function (function literal, lambda abstraction, lambda function, lambda expression or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to ...
s defmodule Hof do def twice(f) do fn(x) -> f.(f.(x)) end end end plus_three = fn(i) -> 3 + i end g = Hof.twice(plus_three) IO.puts g.(7) # 13 Alternatively, we can also compose using pure anonymous functions. twice = fn(f) -> fn(x) -> f.(f.(x)) end end plus_three = fn(i) -> 3 + i end g = twice.(plus_three) IO.puts g.(7) # 13


Erlang

or_else([], _) -> false; or_else([F , Fs], X) -> or_else(Fs, X, F(X)). or_else(Fs, X, false) -> or_else(Fs, X); or_else(Fs, _, ) -> or_else(Fs, Y); or_else(_, _, R) -> R. or_else([fun erlang:is_integer/1, fun erlang:is_atom/1, fun erlang:is_list/1], 3.23). In this Erlang example, the higher-order function takes a list of functions () and argument (). It evaluates the function with the argument as argument. If the function returns false then the next function in will be evaluated. If the function returns then the next function in with argument will be evaluated. If the function returns the higher-order function will return . Note that , , and can be functions. The example returns .


F#

let twice f = f >> f let plus_three = (+) 3 let g = twice plus_three g 7 , > printf "%A" // 13


Go

package main import "fmt" func twice(f func(int) int) func(int) int func main() Notice a function literal can be defined either with an identifier () or anonymously (assigned to variable ).


Haskell

twice :: (Int -> Int) -> (Int -> Int) twice f = f . f plusThree :: Int -> Int plusThree = (+3) main :: IO () main = print (g 7) -- 13 where g = twice plusThree


J

Explicitly, twice=. adverb : 'u u y' plusthree=. verb : 'y + 3' g=. plusthree twice g 7 13 or tacitly, twice=. ^:2 plusthree=. +&3 g=. plusthree twice g 7 13


Java (1.8+)

Using just functional interfaces: import java.util.function.*; class Main Or equivalently, with static methods: import java.util.function.*; class Main


JavaScript

With arrow functions: "use strict"; const twice = f => x => f(f(x)); const plusThree = i => i + 3; const g = twice(plusThree); console.log(g(7)); // 13 Or with classical syntax: "use strict"; function twice(f) function plusThree(i) const g = twice(plusThree); console.log(g(7)); // 13


Julia

julia> function twice(f) function result(x) return f(f(x)) end return result end twice (generic function with 1 method) julia> plusthree(i) = i + 3 plusthree (generic function with 1 method) julia> g = twice(plusthree) (::var"#result#3") (generic function with 1 method) julia> g(7) 13


Kotlin

fun twice(f: (Int) -> Int): (Int) -> Int fun plusThree(i: Int) = i + 3 fun main()


Lua

function twice(f) return function (x) return f(f(x)) end end function plusThree(i) return i + 3 end local g = twice(plusThree) print(g(7)) -- 13


MATLAB

function result = twice(f) result = @inner function val = inner(x) val = f(f(x)); end end plusthree = @(i) i + 3; g = twice(plusthree) disp(g(7)); % 13


OCaml

let twice f x = f (f x) let plus_three = (+) 3 let () = let g = twice plus_three in print_int (g 7); (* 13 *) print_newline ()


PHP

or with all functions in variables: fn(int $x): int => $f($f($x)); $plusThree = fn(int $i): int => $i + 3; $g = $twice($plusThree); echo $g(7), "\n"; // 13 Note that arrow functions implicitly capture any variables that come from the parent scope, whereas anonymous functions require the keyword to do the same.


Perl

use strict; use warnings; sub twice sub plusThree my $g = twice(\&plusThree); print $g->(7), "\n"; # 13 or with all functions in variables: use strict; use warnings; my $twice = sub ; my $plusThree = sub ; my $g = $twice->($plusThree); print $g->(7), "\n"; # 13


Python

>>> def twice(f): ... def result(x): ... return f(f(x)) ... return result >>> plus_three = lambda i: i + 3 >>> g = twice(plus_three) >>> g(7) 13 Python decorator syntax is often used to replace a function with the result of passing that function through a higher-order function. E.g., the function could be implemented equivalently: >>> @twice ... def g(i): ... return i + 3 >>> g(7) 13


R

twice <- function(f) plusThree <- function(i) g <- twice(plusThree) > print(g(7)) 13


Raku

sub twice(Callable:D $f) sub plusThree(Int:D $i) my $g = twice(&plusThree); say $g(7); # 13 In Raku, all code objects are closures and therefore can reference inner "lexical" variables from an outer scope because the lexical variable is "closed" inside of the function. Raku also supports "pointy block" syntax for lambda expressions which can be assigned to a variable or invoked anonymously.


Ruby

def twice(f) ->(x) end plus_three = ->(i) g = twice(plus_three) puts g.call(7) # 13


Rust

fn twice(f: impl Fn(i32) -> i32) -> impl Fn(i32) -> i32 fn plus_three(i: i32) -> i32 fn main()


Scala

object Main


Scheme

(define (add x y) (+ x y)) (define (f x) (lambda (y) (+ x y))) (display ((f 3) 7)) (display (add 3 7)) In this Scheme example, the higher-order function is used to implement
currying In mathematics and computer science, currying is the technique of translating the evaluation of a function that takes multiple arguments into evaluating a sequence of functions, each with a single argument. For example, currying a function f that ...
. It takes a single argument and returns a function. The evaluation of the expression first returns a function after evaluating . The returned function is . Then, it evaluates the returned function with 7 as the argument, returning 10. This is equivalent to the expression , since is equivalent to the curried form of .


Swift

func twice(_ f: @escaping (Int) -> Int) -> (Int) -> Int let plusThree = let g = twice(plusThree) print(g(7)) // 13


Tcl

set twice set plusThree # result: 13 puts pply $twice $plusThree 7 Tcl uses apply command to apply an anonymous function (since 8.6).


XACML

The XACML standard defines higher-order functions in the standard to apply a function to multiple values of attribute bags. rule allowEntry The list of higher-order functions in XACML can be found here.


XQuery

declare function local:twice($f, $x) ; declare function local:plusthree($i) ; local:twice(local:plusthree#1, 7) (: 13 :)


Alternatives


Function pointers

Function pointers in languages such as C, C++, and
Pascal Pascal, Pascal's or PASCAL may refer to: People and fictional characters * Pascal (given name), including a list of people with the name * Pascal (surname), including a list of people and fictional characters with the name ** Blaise Pascal, Fren ...
allow programmers to pass around references to functions. The following C code computes an approximation of the integral of an arbitrary function: #include double square(double x) double cube(double x) /* Compute the integral of f() within the interval ,b*/ double integral(double f(double x), double a, double b, int n) int main() The qsort function from the C standard library uses a function pointer to emulate the behavior of a higher-order function.


Macros

Macros can also be used to achieve some of the effects of higher-order functions. However, macros cannot easily avoid the problem of variable capture; they may also result in large amounts of duplicated code, which can be more difficult for a compiler to optimize. Macros are generally not strongly typed, although they may produce strongly typed code.


Dynamic code evaluation

In other imperative programming languages, it is possible to achieve some of the same algorithmic results as are obtained via higher-order functions by dynamically executing code (sometimes called ''Eval'' or ''Execute'' operations) in the scope of evaluation. There can be significant drawbacks to this approach: *The argument code to be executed is usually not
statically typed In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer progra ...
; these languages generally rely on dynamic typing to determine the well-formedness and safety of the code to be executed. *The argument is usually provided as a string, the value of which may not be known until run-time. This string must either be compiled during program execution (using just-in-time compilation) or evaluated by
interpretation Interpretation may refer to: Culture * Aesthetic interpretation, an explanation of the meaning of a work of art * Allegorical interpretation, an approach that assumes a text should not be interpreted literally * Dramatic Interpretation, an event ...
, causing some added overhead at run-time, and usually generating less efficient code.


Objects

In object-oriented programming languages that do not support higher-order functions,
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
can be an effective substitute. An object's
methods Method ( grc, μέθοδος, methodos) literally means a pursuit of knowledge, investigation, mode of prosecuting such inquiry, or system. In recent centuries it more often means a prescribed process for completing a task. It may refer to: *Scien ...
act in essence like functions, and a method may accept objects as parameters and produce objects as return values. Objects often carry added run-time overhead compared to pure functions, however, and added
boilerplate code In computer programming, boilerplate code, or simply boilerplate, are sections of code that are repeated in multiple places with little to no variation. When using languages that are considered ''verbose'', the programmer must write a lot of boile ...
for defining and instantiating an object and its method(s). Languages that permit
stack Stack may refer to: Places * Stack Island, an island game reserve in Bass Strait, south-eastern Australia, in Tasmania’s Hunter Island Group * Blue Stack Mountains, in Co. Donegal, Ireland People * Stack (surname) (including a list of people ...
-based (versus
heap Heap or HEAP may refer to: Computing and mathematics * Heap (data structure), a data structure commonly used to implement a priority queue * Heap (mathematics), a generalization of a group * Heap (programming) (or free store), an area of memory f ...
-based) objects or
structs In computer science, a record (also called a structure, struct, or compound data) is a basic data structure. Records in a database or spreadsheet are usually called "rows". A record is a collection of ''fields'', possibly of different data types ...
can provide more flexibility with this method. An example of using a simple stack based record in Free Pascal with a function that returns a function: program example; type int = integer; Txy = record x, y: int; end; Tf = function (xy: Txy): int; function f(xy: Txy): int; begin Result := xy.y + xy.x; end; function g(func: Tf): Tf; begin result := func; end; var a: Tf; xy: Txy = (x: 3; y: 7); begin a := g(@f); // return a function to "a" writeln(a(xy)); // prints 10 end. The function a() takes a Txy record as input and returns the integer value of the sum of the record's x and y fields (3 + 7).


Defunctionalization

Defunctionalization In programming languages, defunctionalization is a compile-time transformation which eliminates higher-order functions, replacing them by a single first-order ''apply'' function. The technique was first described by John C. Reynolds in his 1972 p ...
can be used to implement higher-order functions in languages that lack
first-class functions In computer science, a programming language is said to have first-class functions if it treats functions as first-class citizens. This means the language supports passing functions as arguments to other functions, returning them as the values from ...
: // Defunctionalized function data structures template struct Add ; template struct DivBy ; template struct Composition ; // Defunctionalized function application implementations template auto apply(Composition f, X arg) template auto apply(Add f, X arg) template auto apply(DivBy f, X arg) // Higher-order compose function template Composition compose(F f, G g) int main(int argc, const char* argv[]) In this case, different types are used to trigger different functions via function overloading. The overloaded function in this example has the signature auto apply.


See also

* First-class function *
Combinatory logic Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It was introduced by Moses Schönfinkel and Haskell Curry, and has more recently been used in computer science as a theoretical model of comput ...
* Function-level programming * Functional programming *
Kappa calculus In mathematical logic, category theory, and computer science, kappa calculus is a formal system for defining first-order functions. Unlike lambda calculus, kappa calculus has no higher-order functions; its functions are not first class objects ...
- a formalism for functions which ''excludes'' higher-order functions * Strategy pattern *
Higher order message A higher order message (HOM) in a computer programming language is a form of higher-order programming that allows messages that have other messages as arguments. The concept was introduced at MacHack 2003 by Marcel Weiher and presented in a more ...
s


References

{{Reflist Functional programming Lambda calculus Subroutines Articles with example Python (programming language) code Articles with example Haskell code Articles with example Scheme (programming language) code Articles with example JavaScript code Articles with example C code Articles with example Pascal code Articles with example R code