A black hole firewall is a hypothetical phenomenon where an observer falling into a
black hole
A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can defo ...
encounters high-energy
quanta
Quanta is the plural of quantum.
Quanta may also refer to:
Organisations
* Quanta Computer, a Taiwan-based manufacturer of electronic and computer equipment
* Quanta Display Inc., a Taiwanese TFT-LCD panel manufacturer acquired by AU Optronic ...
at (or near) the
event horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.
In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
. The "firewall" phenomenon was proposed in 2012 by physicists
Ahmed Almheiri
Ahmad ( ar, أحمد, ʾAḥmad) is an Arabic male given name common in most parts of the Muslim world. Other spellings of the name include Ahmed and Ahmet.
Etymology
The word derives from the root (ḥ-m-d), from the Arabic (), from the ve ...
,
Donald Marolf
Donald Marolf is a theoretical physicist, a Professor of Physics, and former head of the physics department at the University of California, Santa Barbara.
Biography
Marolf gained his Ph.D. from University of Texas at Austin in 1992, under Bryce ...
,
Joseph Polchinski
Joseph Gerard Polchinski Jr. (; May 16, 1954 – February 2, 2018) was an American theoretical physicist and string theorist.
Biography
Polchinski was born in White Plains, New York, the elder of two children to Joseph Gerard Polchinski Sr. (1929 ...
, and James Sully as a possible solution to an apparent inconsistency in
black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an initialism for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by
Samir Mathur who used the argument in favour of the
fuzzball proposal.
The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.
The motivating paradox
According to
quantum field theory in curved spacetime
In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while givin ...
, a
single emission of
Hawking radiation
Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical ar ...
involves two mutually
entangled particles. The outgoing particle escapes and is emitted as a quantum of Hawking radiation; the infalling particle is swallowed by the black hole. Assume that a black hole formed a finite time in the past and will fully evaporate away in some finite time in the future. Then, it will only emit a finite amount of information encoded within its Hawking radiation. For an old black hole that has crossed the half-way point of evaporation, general arguments from quantum-information theory by
Page and
Lubkin suggest that the new Hawking radiation must be entangled with the old Hawking radiation. However, since the new Hawking radiation must also be entangled with degrees of freedom behind the horizon, this creates a
paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
: a principle called "
monogamy of entanglement" requires that, like any quantum system, the outgoing particle cannot be fully entangled with two independent systems at the same time; yet here the outgoing particle appears to be entangled with both the infalling particle and, independently, with past Hawking radiation.
AMPS initially argued that to resolve the paradox physicists may eventually be forced to give up one of three time-tested principles: Einstein's
equivalence principle,
unitarity, or existing
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
.
[Originally published]
in Quanta, December 21, 2012. However, it is now accepted that an additional tacit assumption in the monogamy paradox was that of
locality. A common view is that theories of quantum gravity do not obey exact locality, which leads to a resolution of the paradox.
On the other hand, some physicists argue that such violations of locality cannot resolve the paradox.
The "firewall" resolution to the paradox
Some scientists suggest that the entanglement must somehow get immediately broken between the infalling particle and the outgoing particle. Breaking this entanglement would release large amounts of energy, thus creating a searing "black hole firewall" at the black hole event horizon. This resolution requires a violation of Einstein's equivalence principle, which states that free-falling is indistinguishable from floating in empty space. This violation has been characterized as "outrageous"; theoretical physicist
Raphael Bousso has complained that "a firewall simply can't appear in empty space, any more than a brick wall can suddenly appear in an empty field and smack you in the face."
Non-firewall resolutions to the paradox
Some scientists suggest that there is in fact no entanglement between the emitted particle and previous Hawking radiation. This resolution would require
black hole information loss, a controversial violation of unitarity.
Others, such as Steve Giddings, suggest modifying quantum field theory so that entanglement would be gradually lost as the outgoing and infalling particles separate, resulting in a more gradual release of energy inside the black hole, and consequently no firewall.
The
Papadodimas–Raju proposal posited that the interior of the black hole was described by the same degrees of freedom as the Hawking radiation. This resolves the monogamy paradox by identifying the two systems that the late Hawking radiation is entangled with. Since, in this proposal, these systems are the same, there is no contradiction with the monogamy of entanglement. Along similar lines,
Juan Maldacena
Juan Martín Maldacena (born September 10, 1968) is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to t ...
and
Leonard Susskind
Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
suggested in the
ER=EPR proposal that the outgoing and infalling particles are somehow connected by wormholes, and therefore are not independent systems.
The
fuzzball
Fuzzball may refer to:
* Fuzzball (sport), a variation of baseball similar to stickball
* Fuzzball (string theory), an alternative quantum description of black holes
* Fuzzball router, the first modern routers on the Internet
* ''Fuzzball'', a car ...
picture resolves the dilemma by replacing the '
no-hair' vacuum with a stringy quantum state, thus explicitly coupling any outgoing Hawking radiation with the formation history of the black hole.
Stephen Hawking received widespread mainstream media coverage in January 2014 with an informal proposal to replace the
event horizon
In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.
In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact ob ...
of a black hole with an "
apparent horizon" where infalling matter is suspended and then released; however, some scientists have expressed confusion about what precisely is being proposed and how the proposal would solve the paradox.
Characteristics and detection
The firewall would exist at the black hole's event horizon, and would be invisible to observers outside the event horizon. Matter passing through the event horizon into the black hole would immediately be "burned to a crisp" by an arbitrarily hot "seething maelstrom of particles" at the firewall.
In a merger of two black holes, the characteristics of a firewall (if any) may leave a mark on the outgoing
gravitational radiation
Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
as "echoes" when waves bounce in the vicinity of the fuzzy event horizon. The expected quantity of such echoes is theoretically unclear, as physicists don't currently have a good physical model of firewalls. In 2016, cosmologist Niayesh Afshordi and others argued there were tentative signs of some such echo in the data from the first black hole merger detected by LIGO;
more recent work has argued there is no statistically significant evidence for such echoes in the data.
See also
*
Black hole information paradox
The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from wh ...
*
Black hole thermodynamics
In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the developm ...
*
Gravitational time dilation
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the close ...
*
Magnetospheric eternally collapsing object
The magnetospheric eternally collapsing object (MECO) is an alternative model for black holes initially proposed by Indian scientist Abhas Mitra in 1998 and later generalized by American researchers Darryl J. Leiter and Stanley L. Robertson. A pro ...
References
{{quantum gravity
Black holes
Quantum gravity
Quantum mechanical entropy
Theorems in general relativity