Fibrolytic
   HOME

TheInfoList



OR:

Fibrolytic bacteria constitute a group of
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
s that are able to process complex plant
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wa ...
s thanks to their capacity to synthesize
cellulolytic Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wa ...
and hemicellulolytic
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s. Polysaccharides are present in plant cellular cell walls in a compact
fiber Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
form where they are mainly composed of
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall ...
and
hemicellulose A hemicellulose (also known as polyose) is one of a number of heteropolymer, heteropolymers (matrix polysaccharides), such as arabinoxylans, present along with cellulose in almost all embryophyte, terrestrial plant cell walls.Scheller HV, Ulvskov H ...
. Fibrolytic enzymes, which are classified as
cellulase Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharide ...
s, can
hydrolyze Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
the β (1 ->4) bonds in plant polysaccharides. Cellulase and
hemicellulase Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysacchar ...
(also known as
xylanase Endo-1,4-β-xylanase (EC 3.2.1.8, systematic name 4-β-D-xylan xylanohydrolase) is any of a class of enzymes that degrade the linear polysaccharide xylan into xylose, thus breaking down hemicellulose, one of the major components of plant cell w ...
) are the two main representatives of these enzymes.


Biological characteristics

Fibrolytic bacteria use
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
and the
pentose In chemistry, a pentose is a monosaccharide (simple sugar) with five carbon atoms. The chemical formula of many pentoses is , and their molecular weight is 150.13 g/mol.phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phospho ...
pathway as the main
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
routes to
catabolize Catabolism () is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. Catabolism breaks down large molecules (such as polysaccharides, lipid ...
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ma ...
s in order to obtain energy and carbon backbones. They use
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
as the major and practically exclusive source of
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, and they require several B-vitamins for their development. They often depend on other microorganisms to obtain some of their nutrients. Although their growth rate is considered slow, it can be enhanced in the presence of considerable amounts of short-chain
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, fr ...
s (isobutyric and isovaleric). These compounds are normally generated as a product of the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
fermentative Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food p ...
activity of other microorganisms. Because of their habitat conditions, most fibrolytic bacteria are
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
.


Cellulolytic communities

Most fibrolytic bacteria are classified as
Bacteroidota The phylum Bacteroidota (synonym Bacteroidetes) is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and ...
or
Bacillota The Bacillota (synonym Firmicutes) are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earl ...
and include several bacterial species with diverse morphological and
physiological Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemical ...
characteristics. They are normally
commensal Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit fro ...
species which have a
symbiotic Symbiosis (from Greek , , "living together", from , , "together", and , bíōsis, "living") is any type of a close and long-term biological interaction between two different biological organisms, be it mutualistic, commensalistic, or parasit ...
relationship with different insect and mammal species, constituting one of the main components of their gastrointestinal flora. In fact, in
herbivore A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthpart ...
s each milliliter of ruminal content can reach about 50 million of bacteria of a great variety of genera and species. . Given the importance of industrial processing of plant fibers in different fields, the genomic analysis of fibrolytic communities in the gastrointestinal tract of different animals, may provide new biotechnological tools for the transformation of complex polysaccharides (including lignocellulytic biomass) .


Applications

So far, most applications are performed using enzymatic aqueous solutions containing one or more types of cellulases. Enzyme production for industrial use has its origins at the end of the nineteenth century in Denmark and Japan. An enzyme is a cellular product which can be obtained from animal and vegetable tissues, or through the biological activity of selected microorganisms. Enzymes are then used in different industrial processes. In order to produce enzymatic solutions for industrial applications, it is first necessary to obtain them in huge amounts and then, purify them to a certain extent; this makes the production process long and expensive. One possible alternative would be working with microbial communities, which makes the process shorter, and cheaper. However, process control is much more difficult when working with bacterial communities than when applying enzymatic solutions.


General applications

In the early 1980s, enzymes produced by fibrolytic bacteria were incorporated in cattle food. This allowed them to obtain more energy from the forage which they fed on, thanks to the partial digestion of lignocellulosic material. They have been gaining importance in the food processing industry, in the filtration of fruit and vegetables juices, in edible oil extraction, in baking, etc. Furthermore, the use of these kinds of enzymes was progressively extended to the textile and laundry industry, where they are used to fade the intense blue of fabrics and to provide them a more faded appearance. In the chemical industry, these enzymes have allowed the development of new detergents and washing-up liquids; in the paper industry they play a very important role in bleaching processes, minimizing toxicity and being more economic; and in biotechnological research, the use of the cellulose binding domains from fibrolytic enzymes has allowed the purification of recombinant proteins.


Energy applications

Fibrolytic bacteria are expected to play an important role in renewable energy production through biomass degradation. One of the main objectives of biotechnology is biofuel production with the aim to reduce emissions, because biofuels obtained from plant material does not contribute a net atmospheric input of {{CO2. The gas emitted during the combustion of biofuels of cellulolytic origin will be reabsorbed in vegetable growth and this is why it does not have an environmental impact so negative.


Discovery of fibrolytic genes and fibrolytic bacteria

Probably, the best studied fibrolytic community is the one in the rumen of ruminants. However, there are other organisms that are able to degrade vegetable fibres, from insects to mollusks, all of them can do it thanks to the activity of different microbial symbionts. In order to improve the industrial transformation processes of vegetable fibres and related applications it is necessary to discover new and efficient enzymes and specialized bacterial communities. Next we describe the main steps in the discovery of genes and genomes from fibrolytic bacteria . The first step that can be followed to obtain fibrolytic bacteria from gastrointestinal cavities in ruminants is the culture of the target communities inside the rumen of a cow by introducing a nylon bag containing a forage with a high cellulose content (for example, Panicum virgatum). An orifice is surgically done to the spine making rumen available from the outside through a tampon which avoids the closing of the fistula. The nylon bag is incubated in the rumen 72 hours. After incubation it is important to separate the microorganisms adhered to the vegetable fibres from the ones that are in suspension in the ruminal fluid.


Analysis of microbial community specificity

To analyze the specificity of the community on the sample, one can compare the diversity of sequences of small subunit ribosomal RNA of the sample with a sample of reference. After extraction and purification of the DNA of the sample, the PCR emulsion technique is used to amplify the genes of the small ribosomal subunit. Then each amplicon is sequenced with the pyrosequencing technique. Once we have the sequences they have to be compared and grouped according to the degree of similarity, to define OTUS (Operational Taxonomic Units)-which are groups of sequences that belong to organisms phylogenetically close. Comparing OTUS of the two samples the differences of both microbial communities could be assessed.


Metagenomic sequencing

In order to obtain the sequences of lignocelulitic genes an accurate metagenomic analysis is done. Sequencing and assembly of the whole DNA of the sample gives the metagenome of the sample.


Identification of carbohydrate active genes

The identification of genes that encode for proteins which have fibrolytic activity is done in two steps. First, a bioinformatic analysis is performed. The sequences obtained in the metagenomic analysis are compared with the gene sequences of known fibrolytic proteins (for example the sequences that are on the data base Carbohidrate Active Enzymes (CAZy)). In this first step the number of candidate genes is reduced considerably and these are the ones that are used on the following step. In the second step, a library for protein expression is built. Expression vectors are introduced in E.coli and after the growth of these bacteria the supernatant is tested for biochemical activity on different substrates.


Identification of fibrolytic microorganisms

To identify to which microorganisms belong the enzymes which have been identified, and check if metagenome assembly was right, a separation of different species of bacteria from the sample can be done by flow cytometry. The use of specific antibodies labelled with fluorochromes makes possible to separate the different cell types of the sample which belong to different phylogenetic groups. This technique is called Fluorescence Activated Cell Sorting (FACS). Once the different species of bacteria are separated, their genomes are sequenced and the validation of the metagenomic analysis can be done.


External links


www.sciencemag.org
References

* ttp://theindustrialenzymologist.blogspot.com/2008/10/les-glicosil-hidrolases-proteases-i.html The Industrial Enzymologist: Les glicosil hidrolases, proteases i lipases T. Ponce Noyola, O. Pérez Avalos. Celulasas y xilanasas en la industria.a Departamento de Biotecnología y Bioingeniería del Cinvestav R. L. Baldwin, M. J. Allison. Rumen Metabolism. Journal of Animal Science 1983. 57:461-477



Mundo Ganadero. El mensual Mundo Ganadero lo edita Eumedia, S.A. en Madrid. C/ Claudio Coello, 16. 28001 MADRID “Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis” Harry J. Flint, Edward A. Bayer, Marco T. Rincon, Raphael Lamed and Bryan A. White. Publicat a la revista Nature el Febrer de 2008 Bacteria