Entropy (order and disorder)
   HOME

TheInfoList



OR:

In thermodynamics,
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
is often associated with the amount of order or disorder in a
thermodynamic system A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
. This stems from
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
' 1862 assertion that any thermodynamic process always "admits to being reduced eductionto the alteration in some way or another of the ''arrangement'' of the constituent parts of the
working body A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
" and that internal work associated with these alterations is quantified energetically by a measure of "entropy" change, according to the following differential expression: :\int \frac \ge 0 where ''Q'' = motional energy (“heat”) that is transferred reversibly to the system from the surroundings and T = the absolute temperature at which the transfer occurs In the years to follow,
Ludwig Boltzmann Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of ther ...
translated these 'alterations of arrangement' into a probabilistic view of order and disorder in gas-phase molecular systems. In the context of entropy, "''perfect internal disorder''" has often been regarded as describing thermodynamic equilibrium, but since the thermodynamic concept is so far from everyday thinking, the use of the term in physics and chemistry has caused much confusion and misunderstanding. In recent years, to interpret the concept of entropy, by further describing the 'alterations of arrangement', there has been a shift away from the words 'order' and 'disorder', to words such as 'spread' and 'dispersal'.


History

This "molecular ordering" entropy perspective traces its origins to molecular movement interpretations developed by
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
in the 1850s, particularly with his 1862 visual conception of molecular
disgregation In the history of thermodynamics, disgregation is an early formulation of the concept of entropy. It was defined in 1862 by Rudolf Clausius as the magnitude of the degree in which the molecules of a body are separated from each other. Clausius m ...
. Similarly, in 1859, after reading a paper on the diffusion of molecules by Clausius, Scottish physicist
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
formulated the
Maxwell distribution Maxwell may refer to: People * Maxwell (surname), including a list of people and fictional characters with the name ** James Clerk Maxwell, mathematician and physicist * Justice Maxwell (disambiguation) * Maxwell baronets, in the Baronetage of ...
of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range. This was the first-ever statistical law in physics. In 1864,
Ludwig Boltzmann Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of ther ...
, a young student in Vienna, came across Maxwell's paper and was so inspired by it that he spent much of his long and distinguished life developing the subject further. Later, Boltzmann, in efforts to develop a
kinetic theory Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and ente ...
for the behavior of a gas, applied the laws of
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
to Maxwell's and Clausius' molecular interpretation of entropy so as to begin to interpret entropy in terms of order and disorder. Similarly, in 1882
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associatio ...
used the word "Unordnung" (disorder) to describe entropy.


Overview

To highlight the fact that order and disorder are commonly understood to be measured in terms of entropy, below are current science encyclopedia and science dictionary definitions of entropy: *A measure of the unavailability of a system's energy to do work; also a measure of disorder; the higher the entropy the greater the disorder. *A measure of disorder; the higher the entropy the greater the disorder. *In thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy. *A measure of disorder in the universe or of the unavailability of the energy in a system to do work. Entropy and disorder also have associations with equilibrium.Landsberg, P.T. (1984). “Is Equilibrium always an Entropy Maximum?” J. Stat. Physics 35: 159–69. Technically, ''entropy'', from this perspective, is defined as a thermodynamic property which serves as a measure of how close a system is to equilibrium—that is, to perfect internal disorder.Microsoft Encarta 2006. © 1993–2005 Microsoft Corporation. All rights reserved. Likewise, the value of the entropy of a distribution of atoms and molecules in a
thermodynamic system A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
is a measure of the disorder in the arrangements of its particles. In a stretched out piece of rubber, for example, the arrangement of the molecules of its structure has an “ordered” distribution and has zero entropy, while the “disordered” kinky distribution of the atoms and molecules in the rubber in the non-stretched state has positive entropy. Similarly, in a gas, the order is perfect and the measure of entropy of the system has its lowest value when all the molecules are in one place, whereas when more points are occupied the gas is all the more disorderly and the measure of the entropy of the system has its largest value. In systems ecology, as another example, the entropy of a collection of items comprising a system is defined as a measure of their disorder or equivalently the relative likelihood of the instantaneous configuration of the items. Moreover, according to theoretical ecologist and chemical engineer
Robert Ulanowicz Robert Edward Ulanowicz ( ) is an American theoretical ecologist and philosopher of Polish descent who in his search for a ''unified theory of ecology'' has formulated a paradigm he calls ''Process Ecology''. He was born September 17, 1943 in B ...
, “that entropy might provide a quantification of the heretofore subjective notion of disorder has spawned innumerable scientific and philosophical narratives.” In particular, many biologists have taken to speaking in terms of the entropy of an organism, or about its antonym
negentropy In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book ''What is Life?'' Later, Léon Brillo ...
, as a measure of the structural order within an organism. The mathematical basis with respect to the association entropy has with order and disorder began, essentially, with the famous Boltzmann formula, S = k_\mathrm \ln W \! , which relates entropy ''S'' to the number of possible states ''W'' in which a system can be found. As an example, consider a box that is divided into two sections. What is the probability that a certain number, or all of the particles, will be found in one section versus the other when the particles are randomly allocated to different places within the box? If you only have one particle, then that system of one particle can subsist in two states, one side of the box versus the other. If you have more than one particle, or define states as being further locational subdivisions of the box, the entropy is larger because the number of states is greater. The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, “it is obvious that entropy is a measure of order or, most likely, disorder in the system.” In this direction, the second law of thermodynamics, as famously enunciated by
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
in 1865, states that:
Thus, if entropy is associated with disorder and if the entropy of the universe is headed towards maximal entropy, then many are often puzzled as to the nature of the "ordering" process and operation of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
in relation to Clausius' most famous version of the second law, which states that the universe is headed towards maximal “disorder”. In the recent 2003 book ''SYNC – the Emerging Science of Spontaneous Order'' by
Steven Strogatz Steven Henry Strogatz (), born August 13, 1959, is an American mathematician and the Jacob Gould Schurman Professor of Applied Mathematics at Cornell University. He is known for his work on nonlinear systems, including contributions to the study o ...
, for example, we find “Scientists have often been baffled by the existence of spontaneous order in the universe. The
laws of thermodynamics The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various paramet ...
seem to dictate the opposite, that nature should inexorably degenerate toward a state of greater disorder, greater entropy. Yet all around us we see magnificent structures—galaxies, cells, ecosystems, human beings—that have all somehow managed to assemble themselves.” The common argument used to explain this is that, locally, entropy can be lowered by external action, e.g. solar heating action, and that this applies to machines, such as a refrigerator, where the entropy in the cold chamber is being reduced, to growing crystals, and to living organisms. This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. The conditioner of this statement suffices that living systems are open systems in which both
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
,
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
, and or
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
may transfer into or out of the system. Unlike temperature, the putative entropy of a living system would drastically change if the organism were thermodynamically isolated. If an organism was in this type of “isolated” situation, its entropy would increase markedly as the once-living components of the organism decayed to an unrecognizable mass.


Phase change

Owing to these early developments, the typical example of entropy change Δ''S'' is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases. Moreover, according to the
third law of thermodynamics The third law of thermodynamics states, regarding the properties of closed systems in thermodynamic equilibrium: This constant value cannot depend on any other parameters characterizing the closed system, such as pressure or applied magnetic fiel ...
, at absolute zero temperature, crystalline structures are approximated to have perfect "order" and zero entropy. This correlation occurs because the numbers of different microscopic quantum energy states available to an ordered system are usually much smaller than the number of states available to a system that appears to be disordered. From his famous 1896 ''Lectures on Gas Theory'', Boltzmann diagrams the structure of a solid body, as shown above, by postulating that each
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
in the body has a "rest position". According to Boltzmann, if it approaches a neighbor molecule it is repelled by it, but if it moves farther away there is an attraction. This, of course was a revolutionary perspective in its time; many, during these years, did not believe in the existence of either atoms or molecules (see:
history of the molecule In chemistry, the history of molecular theory traces the origins of the concept or idea of the existence of strong chemical bonds between two or more atoms. The modern concept of molecules can be traced back towards pre-scientific and Greek phil ...
). According to these early views, and others such as those developed by William Thomson, if energy in the form of
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
is added to a solid, so to make it into a liquid or a gas, a common depiction is that the ordering of the atoms and molecules becomes more random and chaotic with an increase in temperature: Thus, according to Boltzmann, owing to increases in thermal motion, whenever heat is added to a working substance, the rest position of molecules will be pushed apart, the body will expand, and this will create more ''molar-disordered'' distributions and arrangements of molecules. These disordered arrangements, subsequently, correlate, via probability arguments, to an increase in the measure of entropy.


Entropy-driven order

Entropy has been historically, e.g. by Clausius and Helmholtz, associated with disorder. However, in common speech, order is used to describe organization, structural regularity, or form, like that found in a crystal compared with a gas. This commonplace notion of order is described quantitatively by
Landau theory Landau theory in physics is a theory that Lev Landau introduced in an attempt to formulate a general theory of continuous (i.e., second-order) phase transitions. It can also be adapted to systems under externally-applied fields, and used as a qu ...
. In Landau theory, the development of order in the everyday sense coincides with the change in the value of a mathematical quantity, a so-called
order parameter In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of ...
. An example of an order parameter for crystallization is "bond orientational order" describing the development of preferred directions (the crystallographic axes) in space. For many systems, phases with more structural (e.g. crystalline) order exhibit less entropy than fluid phases under the same thermodynamic conditions. In these cases, labeling phases as ordered or disordered according to the relative amount of entropy (per the Clausius/Helmholtz notion of order/disorder) or via the existence of structural regularity (per the Landau notion of order/disorder) produces matching labels. However, there is a broad class of systems that manifest entropy-driven order, in which phases with organization or structural regularity, e.g. crystals, have higher entropy than structurally disordered (e.g. fluid) phases under the same thermodynamic conditions. In these systems phases that would be labeled as disordered by virtue of their higher entropy (in the sense of Clausius or Helmholtz) are ordered in both the everyday sense and in Landau theory. Under suitable thermodynamic conditions, entropy has been predicted or discovered to induce systems to form ordered liquid-crystals, crystals, and quasicrystals. In many systems, directional entropic forces drive this behavior. More recently, it has been shown it is possible to precisely engineer particles for target ordered structures.


Adiabatic demagnetization

In the quest for ultra-cold temperatures, a temperature lowering technique called
adiabatic demagnetization Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators. A magnetocaloric material warms up when a m ...
is used, where atomic entropy considerations are utilized which can be described in order-disorder terms. In this process, a sample of solid such as chrome-alum salt, whose molecules are equivalent to tiny magnets, is inside an insulated enclosure cooled to a low temperature, typically 2 or 4 kelvins, with a strong
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
being applied to the container using a powerful external magnet, so that the tiny molecular magnets are aligned forming a well-ordered "initial" state at that low temperature. This magnetic alignment means that the magnetic energy of each molecule is minimal.NASA – How does an Adiabatic Demagnetization Refrigerator Work ?
/ref> The external magnetic field is then reduced, a removal that is considered to be closely reversible. Following this reduction, the atomic magnets then assume random less-ordered orientations, owing to thermal agitations, in the "final" state: The "disorder" and hence the entropy associated with the change in the atomic alignments has clearly increased. In terms of energy flow, the movement from a magnetically aligned state requires energy from the thermal motion of the molecules, converting thermal energy into magnetic energy. Yet, according to the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
, because no
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
can enter or leave the container, due to its adiabatic insulation, the system should exhibit no change in entropy, i.e. Δ''S'' = 0. The increase in disorder, however, associated with the randomizing directions of the atomic magnets represents an entropy ''increase''? To compensate for this, the disorder (entropy) associated with the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
of the specimen must ''decrease'' by the same amount. The temperature thus falls as a result of this process of thermal energy being converted into magnetic energy. If the magnetic field is then increased, the temperature rises and the magnetic salt has to be cooled again using a cold material such as liquid helium.


Difficulties with the term "disorder"

In recent years the long-standing use of term "disorder" to discuss entropy has met with some criticism.Frank L. Lambert, 2002,
Disorder—A Cracked Crutch for Supporting Entropy Discussions
" ''Journal of Chemical Education'' 79: 187. Updated version a

Critics of the terminology state that entropy is not a measure of 'disorder' or 'chaos', but rather a measure of energy's diffusion or dispersal to more microstates. Shannon's use of the term 'entropy' in information theory refers to the most compressed, or least dispersed, amount of code needed to encompass the content of a signal.


See also

*
Entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
*
Entropy production Entropy production (or generation) is the amount of entropy which is produced in any irreversible processes such as heat and mass transfer processes including motion of bodies, heat exchange, fluid flow, substances expanding or mixing, anelastic d ...
*
Entropy rate In the mathematical theory of probability, the entropy rate or source information rate of a stochastic process is, informally, the time density of the average information in a stochastic process. For stochastic processes with a countable index, the ...
* History of entropy *
Entropy of mixing In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the therm ...
*
Entropy (information theory) In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Given a discrete random variable X, which takes values in the alphabet \ ...
*
Entropy (computing) In computing, entropy is the randomness collected by an operating system or application for use in cryptography or other uses that require random data. This randomness is often collected from hardware sources (variance in fan noise or HDD), eithe ...
*
Entropy (energy dispersal) The interpretation of entropy as a measure of energy dispersal has been exercised against the background of the traditional view, introduced by Ludwig Boltzmann, of entropy as a quantitative measure of disorder. The energy dispersal approach avoids ...
*
Second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
*
Entropy (statistical thermodynamics) The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy ...
*
Entropy (classical thermodynamics) In classical thermodynamics, entropy is a property of a thermodynamic system that expresses the direction or outcome of spontaneous changes in the system. The term was introduced by Rudolf Clausius in the mid-nineteenth century from the Greek word ...


References


External links

* Lambert, F. L
Entropy Sites—A Guide
* Lambert, F. L

Journal of Chemical Education {{DEFAULTSORT:Entropy (Order And Disorder) Thermodynamic entropy State functions