Exchange Force
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
the term exchange force has been used to describe two distinct concepts which should not be confused.


Exchange of force carriers in particle physics

The preferred meaning of exchange force is in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, where it denotes a force produced by the exchange of
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...
particles, such as the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
produced by the exchange of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
s between
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s and the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
produced by the exchange of
gluons A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
between
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
. The idea of an exchange force implies a continual exchange of virtual particles which accompany the interaction and transmit the force, a process that receives its operational justification through the Heisenberg uncertainty principle. With this notion, one can think about the operation of forces as being analogous to the following situation: Two people are standing on an ice pond. One person moves their arm and is pushed backwards; a moment later the other person grabs at an invisible object and is driven backwards (repulsed). Even though you cannot see a basketball, you can assume that one person threw a basketball to the other person because you see its effect on the people
ANIMATION
Another crude analogy which is often used to explain attraction instead of repulsion is two people on an ice pond throwing boomerangs at each other. The boomerang is thrown away from the catcher but it circles to the catcher in the thrower's direction, both the thrower and the catcher are impulsed toward each other by the throwing and catching actions. All interactions which affect matter particles can be thought of as involving to an exchange of force carrier particles, a different type of particle altogether, the
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturba ...
. These particles can be thought of somewhat analogously to basketballs tossed between matter particles (which are like the basketball players). What we normally think of as "forces" are actually the effects of force carrier particles on matter particles. The basketball animation is, of course, a very crude analogy since it can only explain repulsive forces and gives no hint of how exchanging particles can result in attractive forces. We see examples of attractive forces in everyday life (such as magnets and gravity), and so we generally take it for granted that an object's presence can just affect another object. It is when we approach the deeper question, "How can two objects affect one another without touching?" that we propose that the invisible force could be an exchange of force carrier particles. Particle physicists have found that we can explain the force of one particle acting on another to incredible precision by the exchange of these force carrier particles. One important thing to know about force carriers is that a particular force carrier particle can only be absorbed or produced by a matter particle which is affected by that particular force. For instance, electrons and protons have electric charge, so they can produce and absorb the electromagnetic force carrier, the photon. Neutrinos, on the other hand, have no electric charge, so they cannot absorb or produce photons.


History

One of the earliest uses of the term ''interaction'' was in a discussion by
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
in 1913 of the interaction between the negative
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
and the positive
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
. Exchange forces were introduced by
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
(1932) and
Ettore Majorana Ettore Majorana (,, uploaded 19 April 2013, retrieved 14 December 2019 ; born on 5 August 1906 – possibly dying after 1959) was an Italian theoretical physicist who worked on neutrino masses. On 25 March 1938, he disappeared under mysteri ...
(1933) in order to account for the saturation of
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
and of nuclear density. This was done in analogy to the quantum mechanical theory of covalent bonds, such as exist between two hydrogen atoms in the hydrogen molecule wherein the chemical force is attractive if the wave function is symmetric under exchange of coordinates of the electrons and is repulsive if the wave function is anti-symmetric in this respect. Additionally,
Ernst Stueckelberg Ernst Carl Gerlach Stueckelberg (baptised as Johann Melchior Ernst Karl Gerlach Stückelberg, full name after 1911: Baron Ernst Carl Gerlach Stueckelberg von Breidenbach zu Breidenstein und Melsbach; 1 February 1905 – 4 September 1984) was a S ...
developed the vector boson exchange force model as the theoretical explanation of the strong nuclear force in 1935.


Exchange interaction and quantum state symmetry

As another, entirely distinct, meaning of exchange force, it is sometimes usedFor example, pp. 87–88, ''Driving Force: the natural magic of magnets'', James D. Livingston, Harvard University Press, 1996. . as a synonym for the
exchange interaction In chemistry and physics, the exchange interaction (with an exchange energy and exchange term) is a quantum mechanical effect that only occurs between identical particles. Despite sometimes being called an exchange force in an analogy to classic ...
, between electrons which arises from a combination of the identity of particles,
exchange symmetry In quantum mechanics, identical particles (also called indistinguishable or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, ...
, and the
electrostatic Electrostatics is a branch of physics that studies electric charges at rest ( static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amb ...
force. To illustrate the concept of exchange interaction, any two
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s, for example, in the universe are considered indistinguishable particles, and so according to quantum mechanics in 3 dimensions, every particle must behave as a
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
or a fermion. In the former case, two (or more) particles can occupy the same
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution i ...
and this results in an exchange interaction between them in the form of attraction; in the latter case, the particles can not occupy the same state according to the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulat ...
. From quantum field theory, the
spin–statistics theorem In quantum mechanics, the spin–statistics theorem relates the intrinsic spin of a particle (angular momentum not due to the orbital motion) to the particle statistics it obeys. In units of the reduced Planck constant ''ħ'', all particles tha ...
demands that all particles with half-integer spin behave as fermions and all particles with
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
spin behave as bosons. Thus, it so happens that all electrons are fermions, since they have spin 1/2. As a mathematical consequence, fermions exhibit strong repulsion when their wave functions overlap, but bosons exhibit attraction. This repulsion is what the exchange interaction models. Fermi repulsion results in "stiffness" of fermions. That is why atomic matter, is "stiff" or "rigid" to touch. Where
wave functions A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements m ...
of electrons overlap, Pauli repulsion takes place. The same is true for
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
and neutrons where due to their larger mass, the rigidity of baryons is much larger than that of electrons.


See also

*
Exchange symmetry In quantum mechanics, identical particles (also called indistinguishable or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, ...
*
Fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
* Holstein–Herring method


References


External links


Exchange Interaction
(PDF)

{{Webarchive, url=https://web.archive.org/web/20150330010222/http://www.cmp.liv.ac.uk/frink/thesis/thesis/node68.html , date=2015-03-30

Gauge bosons Pauli exclusion principle