Ex-meridian
   HOME

TheInfoList



OR:

Ex-meridian is a
celestial navigation Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space (or on the surface of ...
method of calculating an observer's position on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
. The method gives the observer a position line on which the observer is situated. It is usually used when the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
is obscured at
noon Noon (or midday) is 12 o'clock in the daytime. It is written as 12 noon, 12:00 m. (for meridiem, literally 12:00 noon), 12 p.m. (for post meridiem, literally "after noon"), 12 pm, or 12:00 (using a 24-hour clock) or 1200 (military time). Solar ...
, and as a result, a
meridian altitude Meridian altitude is a method of celestial navigation to calculate an observer's latitude. It notes the altitude angle of an astronomical object above the horizon at culmination. Principle Meridian altitude is the simplest calculation of celesti ...
is not possible. The navigator measures the altitude of the Sun as close to noon as possible and then calculates where the position line lies.


Methodology

This method uses an assumed
longitude Longitude (, ) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter l ...
and calculates the
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
that a position line crosses it. The position line obtained is actually part of a
small circle A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean space. ...
, as opposed to
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geomet ...
, where any observer can stand and the celestial object would have the same altitude in the sky. When plotting the small segment of this circle on a chart it is drawn as a straight line, the resulting tiny errors are too small to be significant. The assumed longitude is usually obtained from the DR or Dead Reckoning position run up from a morning sight taken at around 9.00 am. This is worked out by applying the distance from that position either by log or by the estimated speed over time with the course steered. A sight is taken, that is the distance above the horizon of a heavenly object, in this case nearly always the sun, is measured with a
sextant A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celes ...
and the exact time noted in UTC. The sextant angle obtained is corrected for dip (the error caused by the observers height above the sea) and refraction to obtain the true altitude of the object above the horizon. This is then subtracted from 90° to obtain the angular distance from the position directly above, the zenith. This is referred to as the True Zenith Distance. The true zenith distance of the object is also the distance (in arc) on the Earth's surface from the observer to where that object is overhead, the geographical position of the object. Using a
nautical almanac A nautical almanac is a publication describing the positions of a selection of celestial bodies for the purpose of enabling navigators to use celestial navigation to determine the position of their ship while at sea. The Almanac specifies for ea ...
, the
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of the ...
(celestial latitude), and the
Greenwich Greenwich ( , ,) is a town in south-east London, England, within the ceremonial county of Greater London. It is situated east-southeast of Charing Cross. Greenwich is notable for its maritime history and for giving its name to the Greenwich ...
hour angle In astronomy and celestial navigation, the hour angle is the angle between two planes: one containing Earth's axis and the zenith (the '' meridian plane''), and the other containing Earth's axis and a given point of interest (the ''hour circle'' ...
(celestial longitude) are obtained of the observed object for the time of observation. The assumed longitude is now added or subtracted to the Greenwich Hour Angle of the object to obtain the local hour angle, that is the difference in longitude between the DR position and the geographical position of the object. With this information it is possible using the
haversine The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',Meridian Meridian or a meridian line (from Latin ''meridies'' via Old French ''meridiane'', meaning “midday”) may refer to Science * Meridian (astronomy), imaginary circle in a plane perpendicular to the planes of the celestial equator and horizon * ...
Zenith Distance is obtained the algebraic sum of it with the declination of the object gives the latitude of a point where the position line crosses the meridian of DR longitude. To draw the position line on a chart the
azimuth An azimuth (; from ar, اَلسُّمُوت, as-sumūt, the directions) is an angular measurement in a spherical coordinate system. More specifically, it is the horizontal angle from a cardinal direction, most commonly north. Mathematicall ...
or bearing of the heavenly object must be known. It is usually calculated but could have been observed. A line at right angles to the azimuth is drawn through the calculated position which is where the calculated latitude and the DR longitude cross. The observer is somewhere on this line. To obtain a fix (a position) this line must be crossed with another position line either from another sight or from elsewhere. In the case of ex-meridian the position line is usually crossed with the position line obtained earlier which has been run up.


Ex-Meridian Tables

The first of these tables applies corrections to the altitude taken with the argument of ''Change of Altitude in one minute from Meridian Passage''. Two other tables apply more corrections until the correct latitude is arrived at.


Accuracy and Versatility

The Ex-Meridian method of calculating sights is at its most accurate when the azimuth of the object is near to south or north. As the azimuth changes towards the east or west the cross of the position line with the assumed longitude becomes more and more oblique and the position obtained is therefore less accurate. For this reason it is a less versatile method of calculating sights than the
intercept method In astronomical navigation, the intercept method, also known as Marcq St. Hilaire method, is a method of calculating an observer's position on earth (geopositioning). It was originally called the ''azimuth intercept'' method because the process inv ...
which can be used for all azimuths. The tables are a quick and easy way to correct the altitude when the object is fairly low in the sky and the observer has only missed noon by a few minutes but if noon has been missed by more than that or the sun is high in the sky it is better to work out a sight by the intercept method.


See also

*
Celestial navigation Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space (or on the surface of ...
*
Navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation, ...
*
Latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
*
Longitude Longitude (, ) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter l ...
*
Haversine formula The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, ...
*
Intercept method In astronomical navigation, the intercept method, also known as Marcq St. Hilaire method, is a method of calculating an observer's position on earth (geopositioning). It was originally called the ''azimuth intercept'' method because the process inv ...
*
Longitude by chronometer Longitude by chronometer is a method, in navigation, of determining longitude using a marine chronometer, which was developed by John Harrison during the first half of the eighteenth century. It is an astronomical method of calculating the long ...


References

*''Nicholls's Concise Guide, Volume 1'', by Charles H. Brown F.R.S.G.S. Extra Master *''Norie's Nautical Tables'', edited by Capt. A.G. Blance *''The Nautical Almanac 2005'', published by Her Majesty's Nautical Almanac Office {{DEFAULTSORT:Ex-Meridian Navigation