Evolutionary game theory (EGT) is the application of
game theory to evolving populations in
biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
. It defines a framework of contests, strategies, and analytics into which
Darwinian
Darwinism is a theory of biological evolution developed by the English naturalist Charles Darwin (1809–1882) and others, stating that all species of organisms arise and develop through the natural selection of small, inherited variations that ...
competition can be modelled. It originated in 1973 with
John Maynard Smith
John Maynard Smith (6 January 1920 – 19 April 2004) was a British theoretical and mathematical evolutionary biologist and geneticist. Originally an aeronautical engineer during the Second World War, he took a second degree in genetics un ...
and
George R. Price
George Robert Price (October 6, 1922 – January 6, 1975) was an American population geneticist. Price is often noted for his formulation of the Price equation in 1967.
Originally a physical chemist and later a science journalist, he moved ...
's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.
Evolutionary game theory differs from classical game theory in focusing more on the dynamics of strategy change.
This is influenced by the frequency of the competing strategies in the population.
Evolutionary game theory has helped to explain the basis of
altruistic
Altruism is the principle and moral practice of concern for the welfare and/or happiness of other human beings or animals, resulting in a quality of life both material and spiritual. It is a traditional virtue in many cultures and a core asp ...
behaviours in Darwinian
evolution
Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
. It has in turn become of interest to
economists
An economist is a professional and practitioner in the social science discipline of economics.
The individual may also study, develop, and apply theories and concepts from economics and write about economic policy. Within this field there are ...
,
sociologists
This is a list of sociologists. It is intended to cover those who have made substantive contributions to social theory and research, including any sociological subfield. Scientists in other fields and philosophers are not included, unless at least ...
,
anthropologists
An anthropologist is a person engaged in the practice of anthropology. Anthropology is the study of aspects of humans within past and present societies. Social anthropology, cultural anthropology and philosophical anthropology study the norms and ...
, and
philosophers
A philosopher is a person who practices or investigates philosophy. The term ''philosopher'' comes from the grc, φιλόσοφος, , translit=philosophos, meaning 'lover of wisdom'. The coining of the term has been attributed to the Greek th ...
.
History
Classical game theory
Classical
non-cooperative game theory
In game theory, a non-cooperative game is a game with competition between individual players, as opposed to cooperative games, and in which alliances can only operate if self-enforcing (e.g. through credible threats). However, 'cooperative' an ...
was conceived by
John von Neumann
John von Neumann (; hu, Neumann János Lajos, ; December 28, 1903 – February 8, 1957) was a Hungarian-American mathematician, physicist, computer scientist, engineer and polymath. He was regarded as having perhaps the widest cove ...
to determine optimal strategies in competitions between adversaries. A contest involves players, all of whom have a choice of moves. Games can be a single round or repetitive. The approach a player takes in making their moves constitutes their strategy. Rules govern the outcome for the moves taken by the players, and outcomes produce payoffs for the players; rules and resulting payoffs can be expressed as
decision trees or in a
payoff matrix
In game theory, normal form is a description of a ''game''. Unlike extensive form, normal-form representations are not graphical ''per se'', but rather represent the game by way of a matrix. While this approach can be of greater use in identifyin ...
. Classical theory requires the players to make rational choices. Each player must consider the strategic analysis that their opponents are making to make their own choice of moves.
The problem of ritualized behaviour
Evolutionary game theory started with the problem of how to explain ritualized animal behaviour in a conflict situation; "why are animals so 'gentlemanly or ladylike' in contests for resources?" The leading
ethologists
Ethology is the scientific study of animal behaviour, usually with a focus on behaviour under natural conditions, and viewing behaviour as an evolutionarily adaptive trait. Behaviourism as a term also describes the scientific and objectiv ...
Niko Tinbergen
Nikolaas "Niko" Tinbergen (; ; 15 April 1907 – 21 December 1988) was a Dutch biologist and ornithologist who shared the 1973 Nobel Prize in Physiology or Medicine with Karl von Frisch and Konrad Lorenz for their discoveries concerning the or ...
and
Konrad Lorenz
Konrad Zacharias Lorenz (; 7 November 1903 – 27 February 1989) was an Austrian zoologist, ethologist, and ornithologist. He shared the 1973 Nobel Prize in Physiology or Medicine with Nikolaas Tinbergen and Karl von Frisch. He is often regarde ...
proposed that such behaviour exists
for the benefit of the species.
John Maynard Smith
John Maynard Smith (6 January 1920 – 19 April 2004) was a British theoretical and mathematical evolutionary biologist and geneticist. Originally an aeronautical engineer during the Second World War, he took a second degree in genetics un ...
considered that incompatible with Darwinian thought, where selection occurs at an individual level, so self-interest is rewarded while seeking the common good is not. Maynard Smith, a mathematical biologist, turned to game theory as suggested by George Price, though
Richard Lewontin
Richard Charles Lewontin (March 29, 1929 – July 4, 2021) was an American evolutionary biologist, mathematician, geneticist, and social commentator. A leader in developing the mathematical basis of population genetics and evolutionary theory, ...
's attempts to use the theory had failed.
Adapting game theory to evolutionary games
Maynard Smith realised that an evolutionary version of game theory does not require players to act rationally—only that they have a strategy. The results of a game show how good that strategy was, just as
evolution
Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
tests alternative strategies for the ability to survive and reproduce. In biology, strategies are genetically inherited traits that control an individual's action, analogous with computer programs. The success of a strategy is determined by how good the strategy is in the presence of competing strategies (including itself), and of the frequency with which those strategies are used. Maynard Smith described his work in his book ''
Evolution and the Theory of Games
''Evolution and the Theory of Games'' is a book by the British evolutionary biologist John Maynard Smith on evolutionary game theory. The book was initially published in December 1982 by Cambridge University Press.
Overview
In the book, John Ma ...
''.
Participants aim to produce as many replicas of themselves as they can, and the payoff is in units of fitness (relative worth in being able to reproduce). It is always a multi-player game with many competitors. Rules include replicator dynamics, in other words how the fitter players will spawn more replicas of themselves into the population and how the less fit will be
culled
In biology, culling is the process of segregating organisms from a group according to desired or undesired characteristics. In animal breeding, it is the process of removing or segregating animals from a breeding stock based on a specific tr ...
, in a
replicator equation In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. The replicator equation differs from other equations used to model replication, such as the quasispecie ...
. The replicator dynamics models heredity but not mutation, and assumes asexual reproduction for the sake of simplicity. Games are run repetitively with no terminating conditions. Results include the dynamics of changes in the population, the success of strategies, and any equilibrium states reached. Unlike in classical game theory, players do not choose their strategy and cannot change it: they are born with a strategy and their offspring inherit that same strategy.
Evolutionary games
Models
Evolutionary game theory encompasses Darwinian evolution, including competition (the game), natural selection (replicator dynamics), and heredity. Evolutionary game theory has contributed to the understanding of
group selection
Group selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene.
Early authors such as V. C. Wynne-Edwards and Konrad Lorenz argued that the behavi ...
,
sexual selection
Sexual selection is a mode of natural selection in which members of one biological sex choose mates of the other sex to mate with (intersexual selection), and compete with members of the same sex for access to members of the opposite sex ( ...
,
altruism,
parental care
Parental care is a behavioural and evolutionary strategy adopted by some animals, involving a parental investment being made to the evolutionary fitness of offspring. Patterns of parental care are widespread and highly diverse across the animal ki ...
,
co-evolution
In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well ...
, and
ecological
Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps wi ...
dynamics. Many counter-intuitive situations in these areas have been put on a firm mathematical footing by the use of these models.
The common way to study the evolutionary dynamics in games is through
replicator equation In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. The replicator equation differs from other equations used to model replication, such as the quasispecie ...
s. These show the growth rate of the proportion of organisms using a certain strategy and that rate is equal to the difference between the average payoff of that strategy and the average payoff of the population as a whole.
Continuous replicator equations assume infinite populations,
continuous time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled.
Discrete time
Discrete time views values of variables as occurring at distinct, separate "po ...
,
complete mixing
In evolutionary game theory, complete mixing refers to an assumption about the type of interactions that occur between individual organisms. Interactions between individuals in a population attains complete mixing if and only if the probably indiv ...
and that strategies breed true. Some
attractor
In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain ...
s (all global asymptotically stable fixed points) of the equations are
evolutionarily stable state A population can be described as being in an evolutionarily stable state when that population's "genetic composition is restored by selection after a disturbance, provided the disturbance is not too large" (Maynard Smith, 1982).Maynard Smith, J.. (1 ...
s.
A strategy which can survive all "mutant" strategies is considered evolutionarily stable. In the context of animal behavior, this usually means such strategies are programmed and heavily influenced by
genetics
Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
, thus making any player or organism's strategy determined by these biological factors.
Evolutionary games are mathematical objects with different rules, payoffs, and mathematical behaviours. Each "game" represents different problems that organisms have to deal with, and the strategies they might adopt to survive and reproduce. Evolutionary games are often given colourful names and cover stories which describe the general situation of a particular game. Representative games include
hawk-dove,
[ ]war of attrition
The War of Attrition ( ar, حرب الاستنزاف, Ḥarb al-Istinzāf; he, מלחמת ההתשה, Milhemet haHatashah) involved fighting between Israel and Egypt, Jordan, the Palestine Liberation Organisation (PLO) and their allies from ...
,[ ]stag hunt
In game theory, the stag hunt, sometimes referred to as the assurance game, trust dilemma or common interest game, describes a conflict between safety and social cooperation. The stag hunt problem originated with philosopher Jean-Jacques Rousseau ...
, producer-scrounger, tragedy of the commons
Tragedy (from the grc-gre, τραγῳδία, ''tragōidia'', ''tragōidia'') is a genre of drama based on human suffering and, mainly, the terrible or sorrowful events that befall a main character. Traditionally, the intention of tragedy i ...
, and prisoner's dilemma
The Prisoner's Dilemma is an example of a game analyzed in game theory. It is also a thought experiment that challenges two completely rational agents to a dilemma: cooperate with their partner for mutual reward, or betray their partner ("def ...
. Strategies for these games include hawk, dove, bourgeois, prober, defector, assessor, and retaliator. The various strategies compete under the particular game's rules, and the mathematics are used to determine the results and behaviours.
Hawk dove
The first game that Maynard Smith
John Maynard Smith (6 January 1920 – 19 April 2004) was a British theoretical and mathematical evolutionary biologist and geneticist. Originally an aeronautical engineer during the Second World War, he took a second degree in genetics und ...
analysed is the classic '' hawk dove'' game. It was conceived to analyse Lorenz and Tinbergen's problem, a contest over a shareable resource. The contestants can be either a hawk or a dove. These are two subtypes or morphs of one species with different strategies. The hawk first displays aggression, then escalates into a fight until it either wins or is injured (loses). The dove first displays aggression, but if faced with major escalation runs for safety. If not faced with such escalation, the dove attempts to share the resource.[
Given that the resource is given the value V, the damage from losing a fight is given cost C:][
*If a hawk meets a dove, the hawk gets the full resource V
*If a hawk meets a hawk, half the time they win, half the time they lose, so the average outcome is then V/2 minus C/2
*If a dove meets a hawk, the dove will back off and get nothing – 0
*If a dove meets a dove, both share the resource and get V/2
The actual payoff, however, depends on the probability of meeting a hawk or dove, which in turn is a representation of the percentage of hawks and doves in the population when a particular contest takes place. That, in turn, is determined by the results of all of the previous contests. If the cost of losing C is greater than the value of winning V (the normal situation in the natural world) the mathematics ends in an ]evolutionarily stable strategy
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is ''impermeable'' when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set o ...
(ESS), a mix of the two strategies where the population of hawks is V/C. The population regresses to this equilibrium point if any new hawks or doves make a temporary perturbation in the population.
The solution of the hawk dove game explains why most animal contests involve only ritual fighting behaviours in contests rather than outright battles. The result does not at all depend on " good of the species" behaviours as suggested by Lorenz, but solely on the implication of actions of so-called selfish genes.[
]
War of attrition
In the hawk dove game the resource is shareable, which gives payoffs to both doves meeting in a pairwise contest. Where the resource is not shareable, but an alternative resource might be available by backing off and trying elsewhere, pure hawk or dove strategies are less effective. If an unshareable resource is combined with a high cost of losing a contest (injury or possible death) both hawk and dove payoffs are further diminished. A safer strategy of lower cost display, bluffing and waiting to win, is then viable – a bluffer strategy. The game then becomes one of accumulating costs, either the costs of displaying or the costs of prolonged unresolved engagement. It is effectively an auction; the winner is the contestant who will swallow the greater cost while the loser gets the same cost as the winner but no resource. The resulting evolutionary game theory mathematics lead to an optimal strategy of timed bluffing.
This is because in the war of attrition any strategy that is unwavering and predictable is unstable, because it will ultimately be displaced by a mutant strategy which relies on the fact that it can best the existing predictable strategy by investing an extra small delta of waiting resource to ensure that it wins. Therefore, only a random unpredictable strategy can maintain itself in a population of bluffers. The contestants in effect choose an acceptable cost to be incurred related to the value of the resource being sought, effectively making a random bid as part of a mixed strategy (a strategy where a contestant has several, or even many, possible actions in their strategy). This implements a distribution of bids for a resource of specific value V, where the bid for any specific contest is chosen at random from that distribution. The distribution (an ESS) can be computed using the Bishop-Cannings theorem, which holds true for any mixed-strategy ESS. The distribution function in these contests was determined by Parker and Thompson to be:
:
The result is that the cumulative population of quitters for any particular cost m in this "mixed strategy" solution is:
:
as shown in the adjacent graph. The intuitive sense that greater values of resource sought leads to greater waiting times is borne out. This is observed in nature, as in male dung flies contesting for mating sites, where the timing of disengagement in contests is as predicted by evolutionary theory mathematics.
Asymmetries that allow new strategies
In the war of attrition there must be nothing that signals the size of a bid to an opponent, otherwise the opponent can use the cue in an effective counter-strategy. There is however a mutant strategy which can better a bluffer in the war of attrition
The War of Attrition ( ar, حرب الاستنزاف, Ḥarb al-Istinzāf; he, מלחמת ההתשה, Milhemet haHatashah) involved fighting between Israel and Egypt, Jordan, the Palestine Liberation Organisation (PLO) and their allies from ...
game if a suitable asymmetry exists, the bourgeois strategy. Bourgeois uses an asymmetry of some sort to break the deadlock. In nature one such asymmetry is possession of a resource. The strategy is to play a hawk if in possession of the resource, but to display then retreat if not in possession. This requires greater cognitive capability than hawk, but bourgeois is common in many animal contests, such as in contests among mantis shrimps and among speckled wood butterflies.
Social behaviour
Games like hawk dove and war of attrition represent pure competition between individuals and have no attendant social elements. Where social influences apply, competitors have four possible alternatives for strategic interaction. This is shown on the adjacent figure, where a plus sign represents a benefit and a minus sign represents a cost.
* In a ''cooperative'' or ''mutualistic'' relationship both "donor" and "recipient" are almost indistinguishable as both gain a benefit in the game by co-operating, i.e. the pair are in a game-wise situation where both can gain by executing a certain strategy, or alternatively both must act in concert because of some encompassing constraints that effectively puts them "in the same boat".
* In an ''altruistic'' relationship the donor, at a cost to themself provides a benefit to the recipient. In the general case the recipient will have a kin relationship to the donor and the donation is one-way. Behaviours where benefits are donated alternatively (in both directions) at a cost, are often called "altruistic", but on analysis such "altruism" can be seen to arise from optimised "selfish" strategies.
* ''Spite'' is essentially a "reversed" form of altruism where an ally is aided by damaging the ally's competitors. The general case is that the ally is kin related and the benefit is an easier competitive environment for the ally. Note: George Price, one of the early mathematical modellers of both altruism and spite, found this equivalence particularly disturbing at an emotional level.
* ''Selfishness'' is the base criteria of all strategic choice from a game theory perspective – strategies not aimed at self-survival and self-replication are not long for any game. Critically however, this situation is impacted by the fact that competition is taking place on multiple levels – i.e. at a genetic, an individual and a group level.
Contests of selfish genes
At first glance it may appear that the contestants of evolutionary games are the individuals present in each generation who directly participate in the game. But individuals live only through one game cycle, and instead it is the strategies that really contest with one another over the duration of these many-generation games. So it is ultimately genes that play out a full contest – selfish genes of strategy. The contesting genes are present in an individual and to a degree in all of the individual's kin. This can sometimes profoundly affect which strategies survive, especially with issues of cooperation and defection. William Hamilton, known for his theory of kin selection
Kin selection is the evolutionary strategy that favours the reproductive success of an organism's relatives, even when at a cost to the organism's own survival and reproduction. Kin altruism can look like altruistic behaviour whose evolution i ...
, explored many of these cases using game-theoretic models. Kin-related treatment of game contests helps to explain many aspects of the behaviour of social insects, the altruistic behaviour in parent-offspring interactions, mutual protection behaviours, and co-operative care of offspring. For such games, Hamilton defined an extended form of fitness – ''inclusive fitness
In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964:
* Personal fitness is the number of offspring that an individual begets (regardless of who rescues/rears/supports them ...
'', which includes an individual's offspring as well as any offspring equivalents found in kin.
Hamilton went beyond kin relatedness to work with Robert Axelrod
Robert Marshall Axelrod (born May 27, 1943) is an American political scientist. He is Professor of Political Science and Public Policy at the University of Michigan where he has been since 1974. He is best known for his interdisciplinary work o ...
, analysing games of co-operation under conditions not involving kin where reciprocal altruism
In evolutionary biology, reciprocal altruism is a behaviour whereby an organism acts in a manner that temporarily reduces its fitness while increasing another organism's fitness, with the expectation that the other organism will act in a similar m ...
came into play.
Eusociality and kin selection
Eusocial
Eusociality (from Greek εὖ ''eu'' "good" and social), the highest level of organization of sociality, is defined by the following characteristics: cooperative brood care (including care of offspring from other individuals), overlapping gen ...
insect workers forfeit reproductive rights to their queen. It has been suggested that kin selection, based on the genetic makeup of these workers, may predispose them to altruistic behaviours. Most eusocial insect societies have haplodiploid
Haplodiploidy is a sex-determination system in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. Haplodiploidy is sometimes called arrhenotoky.
Haplodiploidy determines the sex ...
sexual determination, which means that workers are unusually closely related.
This explanation of insect eusociality has, however, been challenged by a few highly-noted evolutionary game theorists (Nowak and Wilson) who have published a controversial alternative game theoretic explanation based on a sequential development and group selection effects proposed for these insect species.
Prisoner's dilemma
A difficulty of the theory of evolution, recognised by Darwin himself, was the problem of altruism. If the basis for selection is at an individual level, altruism makes no sense at all. But universal selection at the group level (for the good of the species, not the individual) fails to pass the test of the mathematics of game theory and is certainly not the general case in nature. Yet in many social animals, altruistic behaviour exists. The solution to this problem can be found in the application of evolutionary game theory to the prisoner's dilemma
The Prisoner's Dilemma is an example of a game analyzed in game theory. It is also a thought experiment that challenges two completely rational agents to a dilemma: cooperate with their partner for mutual reward, or betray their partner ("def ...
game – a game which tests the payoffs of cooperating or in defecting from cooperation. It is the most studied game in all of game theory.
The analysis of the prisoner's dilemma is as a repetitive game. This affords competitors the possibility of retaliating for defection in previous rounds of the game. Many strategies have been tested; the best competitive strategies are general cooperation, with a reserved retaliatory response if necessary. The most famous and one of the most successful of these is tit-for-tat
Tit for tat is an English saying meaning "equivalent retaliation". It developed from "tip for tap", first recorded in 1558.
It is also a highly effective strategy in game theory. An agent using this strategy will first cooperate, then subseque ...
with a simple algorithm.
def tit_for_tat(last_move_by_opponent):
"""Defect if opponent defects, else cooperate."""
if last_move_by_opponent defect:
defect()
else:
cooperate()
The pay-off for any single round of the game is defined by the pay-off matrix for a single round game (shown in bar chart 1 below). In multi-round games the different choices – co-operate or defect – can be made in any particular round, resulting in a certain round payoff. It is, however, the possible accumulated pay-offs over the multiple rounds that count in shaping the overall pay-offs for differing multi-round strategies such as tit-for-tat.
Example 1: The straightforward single round prisoner's dilemma game. The classic prisoner's dilemma game payoffs gives a player a maximum payoff if they defect and their partner co-operates (this choice is known as ''temptation''). If, however, the player co-operates and their partner defects, they get the worst possible result (the suckers payoff). In these payoff conditions the best choice (a Nash equilibrium) is to defect.
Example 2: Prisoner's dilemma played repeatedly. The strategy employed is ''tit-for-tat'' which alters behaviours based on the action taken by a partner in the previous round – i.e. reward co-operation and punish defection. The effect of this strategy in accumulated payoff over many rounds is to produce a higher payoff for both players' co-operation and a lower payoff for defection. This removes the temptation to defect. The suckers payoff also becomes less, although "invasion" by a pure defection strategy is not entirely eliminated.
Routes to altruism
Altruism takes place when one individual, at a cost (C) to itself, exercises a strategy that provides a benefit (B) to another individual. The cost may consist of a loss of capability or resource which helps in the battle for survival and reproduction, or an added risk to its own survival. Altruism strategies can arise through:
The evolutionarily stable strategy
The evolutionarily stable strategy
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is ''impermeable'' when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set o ...
(ESS) is akin to the Nash equilibrium in classical game theory, but with mathematically extended criteria. Nash equilibrium is a game equilibrium where it is not rational for any player to deviate from their present strategy, provided that the others adhere to their strategies. An ESS is a state of game dynamics where, in a very large population of competitors, another mutant strategy cannot successfully enter the population to disturb the existing dynamic (which itself depends on the population mix). Therefore, a successful strategy (with an ESS) must be both effective against competitors when it is rare – to enter the previous competing population, and successful when later in high proportion in the population – to defend itself. This in turn means that the strategy must be successful when it contends with others exactly like itself.
An ESS is not:
* An optimal strategy: that would maximize fitness, and many ESS states are far below the maximum fitness achievable in a fitness landscape. (See hawk dove graph above as an example of this.)
* A singular solution: often several ESS conditions can exist in a competitive situation. A particular contest might stabilize into any one of these possibilities, but later a major perturbation in conditions can move the solution into one of the alternative ESS states.
* Always present: it is possible for there to be no ESS. An evolutionary game with no ESS is "rock-scissors-paper", as found in species such as the side-blotched lizard (''Uta stansburiana
The common side-blotched lizard (''Uta stansburiana'') is a species of side-blotched lizard in the family Phrynosomatidae. The species is native to dry regions of the western United States and northern Mexico. It is notable for having a unique fo ...
'').
* An unbeatable strategy: the ESS is only an uninvadeable strategy.
The ESS state can be solved for by exploring either the dynamics of population change to determine an ESS, or by solving equations for the stable stationary point conditions which define an ESS. For example, in the hawk dove game we can look for whether there is a static population mix condition where the fitness of doves will be exactly the same as fitness of hawks (therefore both having equivalent growth rates – a static point).
Let the chance of meeting a hawk=p so therefore the chance of meeting a dove is (1-p)
Let Whawk equal the payoff for hawk.....
Whawk=payoff in the chance of meeting a dove + payoff in the chance of meeting a hawk
Taking the payoff matrix results and plugging them into the above equation:
Similarly for a dove:
so....
Equating the two fitnesses, hawk and dove
... and solving for p
so for this "static point" where the ''population percent'' is an ESS solves to be ESS(percent Hawk)=''V/C''
Similarly, using inequalities, it can be shown that an additional hawk or dove mutant entering this ESS state eventually results in less fitness for their kind – both a true Nash and an ESS equilibrium. This example shows that when the risks of contest injury or death (the cost C) is significantly greater than the potential reward (the benefit value V), the stable population will be mixed between aggressors and doves, and the proportion of doves will exceed that of the aggressors. This explains behaviours observed in nature.
Unstable games, cyclic patterns
Rock paper scissors
Rock paper scissors incorporated into an evolutionary game has been used for modelling natural processes in the study of ecology
Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
.
Using experimental economics
Experimental economics is the application of experimental methods to study economic questions. Data collected in experiments are used to estimate effect size, test the validity of economic theories, and illuminate market mechanisms. Economic expe ...
methods, scientists have used RPS games to test human social evolutionary dynamical behaviours in laboratories. The social cyclic behaviours, predicted by evolutionary game theory, have been observed in various laboratory experiments.
Side-blotched lizard plays the RPS, and other cyclical games
The first example of RPS in nature was seen in the behaviours and throat colours of a small lizard of western North America. The side-blotched lizard
Side-blotched lizards are lizards of the genus ''Uta''. They are some of the most abundant and commonly observed lizards in the deserts of western North America, known for cycling between three colorized breeding patternsSinervo, B.; C.M. Lively ...
(''Uta stansburiana'') is polymorphic with three throat-colour morphs that each pursue a different mating strategy:
* The orange throat is very aggressive and operates over a large territory – attempting to mate with numerous females
* The unaggressive yellow throat mimics the markings and behavior of female lizards, and "sneakily" slips into the orange throat's territory to mate with the females there (thereby taking over the population)
* The blue throat mates with, and carefully guards, one female – making it impossible for the sneakers to succeed and therefore overtakes their place in a population
However the blue throats cannot overcome the more aggressive orange throats. Later work showed that the blue males are altruistic to other blue males, with three key traits: they signal with blue color, they recognize and settle next to other (unrelated) blue males, and they will even defend their partner against orange, to the death. This is the hallmark of another game of cooperation that involves a green-beard effect
The green-beard effect is a thought experiment used in evolutionary biology to explain selective altruism among individuals of a species.
The idea of a green-beard gene was proposed by William D. Hamilton in his articles of 1964, and got the ...
.
The females in the same population have the same throat colours, and this affects how many offspring they produce and the size of the progeny, which generates cycles in density, yet another game - the ''r-K'' game. Here, ''r'' is the Malthusian parameter governing exponential growth, and ''K'' is the carrying capacity of the environment. Orange females have larger clutches
A clutch is a mechanical device that engages and disengages power transmission, especially from a drive shaft to a driven shaft. In the simplest application, clutches connect and disconnect two rotating shafts (drive shafts or line shafts) ...
and smaller offspring which do well at low density. Yellow & blue females have smaller clutches and larger offspring which do well at high density. This generates perpetual cycles tightly tied to population density. The idea of cycles due to density regulation of two strategies originated with rodent researcher Dennis Chitty
Dennis Hubert Chitty (18 September 1912 – 3 February 2010), was a professor of zoology at the University of British Columbia. In 1969, he was elected a Fellow of the Royal Society of Canada.
The Chitty Hypothesis of Population Regulation stat ...
, ergo these kinds of games lead to "Chitty cycles". There are games within games within games embedded in natural populations. These drive RPS cycles in the males with a periodicity of four years and ''r-K'' cycles in females with a two year period.
The overall situation corresponds to the rock, scissors, paper game, creating a four-year population cycle. The RPS game in male side-blotched lizards does not have an ESS, but it has a Nash equilibrium (NE) with endless orbits around the NE attractor. Following this Side-blotched lizard research, many other three-strategy polymorphisms have been discovered in lizards and some of these have RPS dynamics merging the male game and density regulation game in a single sex (males). More recently, mammals have been shown to harbour the same RPS game in males and ''r-K'' game in females, with coat-colour polymorphisms and behaviours that drive cycles. This game is also linked to the evolution of male care in rodents, and monogamy, and drives speciation rates. There are ''r-K'' strategy games linked to rodent population cycles (and lizard cycles).
When he read that these lizards were essentially engaged in a game with a rock-paper-scissors structure, John Maynard Smith is said to have exclaimed "They have read my book!".
Signalling, sexual selection and the handicap principle
Aside from the difficulty of explaining how altruism exists in many evolved organisms, Darwin was also bothered by a second conundrum – why a significant number of species have phenotypical attributes that are patently disadvantageous to them with respect to their survival – and should by the process of natural section be selected against – e.g. the massive inconvenient feather structure found in a peacock's tail. Regarding this issue Darwin wrote to a colleague "The sight of a feather in a peacock's tail, whenever I gaze at it, makes me sick." It is the mathematics of evolutionary game theory, which has not only explained the existence of altruism, but also explains the totally counterintuitive existence of the peacock's tail and other such biological encumbrances.
On analysis, problems of biological life are not at all unlike the problems that define economics – eating (akin to resource acquisition and management), survival (competitive strategy) and reproduction (investment, risk and return). Game theory was originally conceived as a mathematical analysis of economic processes and indeed this is why it has proven so useful in explaining so many biological behaviours. One important further refinement of the evolutionary game theory model that has economic overtones rests on the analysis of costs. A simple model of cost assumes that all competitors suffer the same penalty imposed by the game costs, but this is not the case. More successful players will be endowed with or will have accumulated a higher "wealth reserve" or "affordability" than less-successful players. This wealth effect in evolutionary game theory is represented mathematically by "resource holding potential In biology, resource holding potential (RHP) is the ability of an animal to win an all-out fight if one were to take place. The term was coined by Geoff Parker to disambiguate physical fighting ability from the motivation to persevere in a fight (Pa ...
(RHP)" and shows that the effective cost to a competitor with a higher RHP are not as great as for a competitor with a lower RHP. As a higher RHP individual is a more desirable mate in producing potentially successful offspring, it is only logical that with sexual selection RHP should have evolved to be signalled in some way by the competing rivals, and for this to work this signalling must be done ''honestly''. Amotz Zahavi
Amotz Zahavi ( he, אמוץ זהבי) (August 14, 1928 – May 12, 2017) was an Israeli evolutionary biologist, a Professor in the Department of Zoology at Tel Aviv University, and one of the founders of the Society for the Protection of Nature in ...
has developed this thinking in what is known as the "handicap principle
The handicap principle is a hypothesis proposed by the biologist Amotz Zahavi to explain how evolution may lead to "honest" or reliable signalling between animals which have an obvious motivation to bluff or deceive each other. It suggests that ...
", where superior competitors signal their superiority by a costly display. As higher RHP individuals can properly afford such a costly display this signalling is inherently honest, and can be taken as such by the signal receiver. In nature this is illustrated than in the costly plumage of the peacock
Peafowl is a common name for three bird species in the genera '' Pavo'' and '' Afropavo'' within the tribe Pavonini of the family Phasianidae, the pheasants and their allies. Male peafowl are referred to as peacocks, and female peafowl are r ...
. The mathematical proof of the handicap principle was developed by Alan Grafen
Alan Grafen is a Scottish ethologist and evolutionary biologist. He currently teaches and undertakes research at St John's College, Oxford. Along with regular contributions to scientific journals, Grafen is known publicly for his work as co-edit ...
using evolutionary game-theoretic modelling.
Coevolution
Two types of dynamics:
* Evolutionary games which lead to a stable situation or point of stasis for contending strategies which result in an evolutionarily stable strategy
* Evolutionary games which exhibit a cyclic behaviour (as with RPS game) where the proportions of contending strategies continuously cycle over time within the overall population
A third, coevolutionary, dynamic, combines intra-specific and inter-specific competition. Examples include predator-prey competition and host-parasite co-evolution, as well as mutualism. Evolutionary game models have been created for pairwise and multi-species coevolutionary systems. The general dynamic differs between competitive systems and mutualistic systems.
In competitive (non-mutualistic) inter-species coevolutionary system the species are involved in an arms race – where adaptations that are better at competing against the other species tend to be preserved. Both game payoffs and replicator dynamics reflect this. This leads to a Red Queen dynamic where the protagonists must "run as fast as they can to just stay in one place".
A number of evolutionary game theory models have been produced to encompass coevolutionary situations. A key factor applicable in these coevolutionary systems is the continuous adaptation of strategy in such arms races. Coevolutionary modelling therefore often includes genetic algorithms to reflect mutational effects, while computers simulate the dynamics of the overall coevolutionary game. The resulting dynamics are studied as various parameters are modified. Because several variables are simultaneously at play, solutions become the province of multi-variable optimisation. The mathematical criteria of determining stable points are Pareto efficiency
Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engi ...
and Pareto dominance, a measure of solution optimality peaks in multivariable systems.
Carl Bergstrom
Carl Theodore Bergstrom is a theoretical and evolutionary biologist and a professor at the University of Washington in Seattle, Washington. Bergstrom is a critic of low-quality or misleading scientific research. He is the co-author of a book on ...
and Michael Lachmann apply evolutionary game theory to the division of benefits in mutualistic interactions between organisms. Darwinian assumptions about fitness are modeled using replicator dynamics to show that the organism evolving at a slower rate in a mutualistic relationship gains a disproportionately high share of the benefits or payoffs.
Extending the model
A mathematical model analysing the behaviour of a system needs initially to be as simple as possible to aid in developing a base understanding the fundamentals, or “first order effects”, pertaining to what is being studied. With this understanding in place it is then appropriate to see if other, more subtle, parameters (second order effects) further impact the primary behaviours or shape additional behaviours in the system. Following Maynard Smith's seminal work in evolutionary game theory, the subject has had a number of very significant extensions which have shed more light on understanding evolutionary dynamics, particularly in the area of altruistic behaviors. Some of these key extensions to evolutionary game theory are:
Spatial Games
Geographic factors in evolution include gene flow and horizontal gene transfer
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
. Spatial game models represent geometry by putting contestants in a lattice of cells: contests take place only with immediate neighbours. Winning strategies take over these immediate neighbourhoods and then interact with adjacent neighbourhoods. This model is useful in showing how pockets of co-operators can invade and introduce altruism in the Prisoners Dilemma game, where Tit for Tat (TFT) is a Nash Equilibrium but NOT also an ESS. Spatial structure is sometimes abstracted into a general network of interactions. This is the foundation of evolutionary graph theory
Evolutionary graph theory is an area of research lying at the intersection of graph theory, probability theory, and mathematical biology. Evolutionary graph theory is an approach to studying how topology affects evolution of a population. That the ...
.
Effects of having information
In evolutionary game theory as in conventional Game Theory the effect of Signalling (the acquisition of information) is of critical importance, as in Indirect Reciprocity in Prisoners Dilemma (where contests between the SAME paired individuals are NOT repetitive). This models the reality of most normal social interactions which are non-kin related. Unless a probability measure of reputation is available in Prisoners Dilemma only direct reciprocity can be achieved. With this information indirect reciprocity is also supported.
Alternatively, agents might have access to an arbitrary signal initially uncorrelated to strategy but becomes correlated due to evolutionary dynamics. This is the green-beard effect
The green-beard effect is a thought experiment used in evolutionary biology to explain selective altruism among individuals of a species.
The idea of a green-beard gene was proposed by William D. Hamilton in his articles of 1964, and got the ...
(see side-blotched lizards, above) or evolution of ethnocentrism in humans. Depending on the game, it can allow the evolution of either cooperation or irrational hostility.
From molecular to multicellular level, a signaling game
In game theory, a signaling game is a simple type of a dynamic Bayesian game.Subsection 8.2.2 in Fudenberg Trole 1991, pp. 326–331
The essence of a signalling game is that one player takes an action, the signal, to convey information to another ...
model with information asymmetry between sender and receiver might be appropriate, such as in mate attraction or evolution of translation machinery from RNA strings.
Finite populations
Many evolutionary games have been modelled in finite populations to see the effect this may have, for example in the success of mixed strategies.
See also
*Adaptive dynamics
Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of Phenotypic trait, traits in Asexual reproduction, asexually reprodu ...
* Behavioral ecology
* Dynamical systems
*Evolutionary dynamics
Evolutionary dynamics is the study of the mathematical principles according to which biological organisms as well as cultural ideas evolve and evolved. This is mostly achieved through the mathematical discipline of population genetics, along with ...
*Gene-centered view of evolution
With gene defined as "not just one single physical bit of DNA utall replicas of a particular bit of DNA distributed throughout the world", the gene-centered view of evolution, gene's eye view, gene selection theory, or selfish gene theory hol ...
* Memetics
Notes
References
Further reading
* Davis, Morton,; "Game Theory – A Nontechnical Introduction", Dover Books,
*Dawkins, Richard
Richard Dawkins (born 26 March 1941) is a British evolutionary biologist and author. He is an emeritus fellow of New College, Oxford and was Professor for Public Understanding of Science in the University of Oxford from 1995 to 2008. An at ...
; "The Selfish Gene", Oxford University Press,
*Dugatkin and Reeve; "Game Theory and Animal Behavior", Oxford University Press,
*Hofbauer and Sigmund; "Evolutionary Games and Population Dynamics", Cambridge University Press,
* Kohn, Marek; "A Reason for Everything", Faber and Faber,
*Sandholm, William H.; "Population Games and Evolutionary Dynamics", The MIT Press,
*Segerstrale, Ullica; "Nature's Oracle - The life and work of W.D. Hamilton", Oxford University Press, 2013,
* Sigmund, Karl; "Games of Life", Penguin Books, also Oxford University Press, 1993,
* Vincent and Brown; "Evolutionary Game Theory, Natural Selection and Darwinian Dynamics", Cambridge University Press,
External links
Evolutionary game theory at the Stanford Encyclopedia of Philosophy
Evolving Artificial Moral Ecologies at The Centre for Applied Ethics, University of British Columbia
*
*
4Strategies Of Evolutionary Game Theory
{{DEFAULTSORT:Evolutionary Game Theory
Evolutionary dynamics
*
Mathematical and quantitative methods (economics)