Evolutionarily Stable State
   HOME
*





Evolutionarily Stable State
A population can be described as being in an evolutionarily stable state when that population's "genetic composition is restored by selection after a disturbance, provided the disturbance is not too large" (Maynard Smith, 1982).Maynard Smith, J.. (1982) Evolution and the Theory of Games. Cambridge University Press. This population as a whole can be either monomorphic or Polymorphism (biology), polymorphic. This is now referred to as convergent stability. History & connection to evolutionary stable strategy While related to the concept of an evolutionarily stable strategy (ESS), evolutionarily stable states are not identical and the two terms cannot be used interchangeably. An ESS is a strategy that, if adopted by all individuals within a population, cannot be invaded by alternative or mutant strategies. This strategy becomes fixed in the population because alternatives provide no fitness benefit that would be selected for. In comparison, an evolutionarily stable state describes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polymorphism (biology)
In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative ''phenotypes'', in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population (one with random mating). Ford E.B. 1965. ''Genetic polymorphism''. Faber & Faber, London. Put simply, polymorphism is when there are two or more possibilities of a trait on a gene. For example, there is more than one possible trait in terms of a jaguar's skin colouring; they can be light morph or dark morph. Due to having more than one possible variation for this gene, it is termed 'polymorphism'. However, if the jaguar has only one possible trait for that gene, it would be termed "monomorphic". For example, if there was only one possible skin colour that a jaguar could have, it would be termed monomorphic. The term polyphenism can be used to clarify that the different forms arise from the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evolutionarily Stable Strategy
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is ''impermeable'' when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set of strategies) which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science. In game-theoretical terms, an ESS is an equilibrium refinement of the Nash equilibrium, being a Nash equilibrium that is also "evolutionarily stable." Thus, once fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from replacing it (although this does not preclude the possibility that a better strategy, or set of strategies, will emerge in response to selective pressures r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Maynard Smith
John Maynard Smith (6 January 1920 – 19 April 2004) was a British theoretical and mathematical evolutionary biologist and geneticist. Originally an aeronautical engineer during the Second World War, he took a second degree in genetics under the well-known biologist J. B. S. Haldane. Maynard Smith was instrumental in the application of game theory to evolution with George R. Price, and theorised on other problems such as the evolution of sex and signalling theory. Biography Early years John Maynard Smith was born in London, the son of the surgeon Sidney Maynard Smith, but following his father's death in 1928, the family moved to Exmoor, where he became interested in natural history. Quite unhappy with the lack of formal science education at Eton College, Maynard Smith took it upon himself to develop an interest in Darwinian evolutionary theory and mathematics, after having read the work of old Etonian J. B. S. Haldane, whose books were in the school's library despite the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evolution And The Theory Of Games
''Evolution and the Theory of Games'' is a book by the British evolutionary biologist John Maynard Smith on evolutionary game theory. The book was initially published in December 1982 by Cambridge University Press. Overview In the book, John Maynard Smith summarises work on evolutionary game theory that had developed in the 1970s, to which he made several important contributions. The book is also noted for being well written and not overly mathematically challenging. The main contribution to be had from this book is the introduction of the Evolutionarily Stable Strategy, or ESS, concept, which states that for a set of behaviours to be conserved over evolutionary time, they must be the most profitable avenue of action when common, so that no alternative behaviour can invade. So, for instance, suppose that in a population of frogs, males fight to the death over breeding ponds. This would be an ESS if any one cowardly frog that does not fight to the death always fares worse (in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ideal Free Distribution
In ecology, an ideal free distribution (IFD) is a theoretical way in which a populations individuals distribute themselves among several patches of resources within their environment, in order to minimize resource competition and maximize fitness.Fretwell, S. D. 1972. ''Populations in a Seasonal Environment''. Princeton, NJ: Princeton University Press.Fretwell, S. D. & Lucas, H. L., Jr. 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical Development. ''Acta Biotheoretica'' 19: 16–36. The theory states that the number of individual animals that will aggregate in various patches is proportional to the amount of resources available in each. For example, if patch A contains twice as many resources as patch B, there will be twice as many individuals foraging in patch A as in patch B. The term "ideal" implies that animals are aware of each patch's quality, and they choose to forage in the patch with the highest quality. The ter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Evolutionary Game Theory
Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies. Evolutionary game theory differs from classical game theory in focusing more on the dynamics of strategy change. This is influenced by the frequency of the competing strategies in the population. Evolutionary game theory has helped to explain the basis of altruistic behaviours in Darwinian evolution. It has in turn become of interest to economists, sociologists, anthropologists, and philosophers. History Classical game theory Classical non-cooperative game theory was conceived by John von Neumann to determine optimal strategies in competitions between adversa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nash Equilibrium
In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs. If each player has chosen a strategy an action plan based on what has happened so far in the game and no one can increase one's own expected payoff by changing one's strategy while the other players keep their's unchanged, then the current set of strategy choices constitutes a Nash equilibrium. If two players Alice and Bob choose strategies A and B, (A, B) is a Nash equilibrium if Alice has no other strategy available that does better than A at maximizing her payoff in response to Bob choosing B, and Bob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Folk Theorem (game Theory)
In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games . The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria. The Folk Theorem suggests that if the players are patient enough and far-sighted (i.e. if the discount factor \delta \to 1 ), then repeated interaction can result in virtually any average payoff in an SPE equilibrium. "Virtually any" is here technically defined as "feasible" and "individually rational". For example, in the one-shot Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Replicator Equation
In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. The replicator equation differs from other equations used to model replication, such as the quasispecies equation, in that it allows the fitness function to incorporate the distribution of the population types rather than setting the fitness of a particular type constant. This important property allows the replicator equation to capture the essence of selection. Unlike the quasispecies equation, the replicator equation does not incorporate mutation and so is not able to innovate new types or pure strategies. Equation The most general continuous form of the replicator equation is given by the differential equation: : \dot = x_i f_i(x) - \phi(x) \quad \phi(x) = \sum_^ where x_i is the proportion of type i in the population, x=(x_1, \ldots, x_n) is the vector of the distribution of types in the population, f_i(x) is the fitness of type ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]