HOME

TheInfoList



OR:

Euxinia or euxinic conditions occur when water is both
anoxic The term anoxia means a total depletion in the level of oxygen, an extreme form of hypoxia or "low oxygen". The terms anoxia and hypoxia are used in various contexts: * Anoxic waters, sea water, fresh water or groundwater that are depleted of diss ...
and sulfidic. This means that there is no
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
(O2) and a raised level of free
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
(H2S). Euxinic bodies of water are frequently strongly stratified, have an oxic, highly productive, thin surface layer, and have anoxic, sulfidic bottom water. The word euxinia is derived from the Greek name for the
Black Sea The Black Sea is a marginal mediterranean sea of the Atlantic Ocean lying between Europe and Asia, east of the Balkans, south of the East European Plain, west of the Caucasus, and north of Anatolia. It is bounded by Bulgaria, Georgia, Roma ...
(Εὔξεινος Πόντος (''Euxeinos Pontos'')) which translates to "hospitable sea". Euxinic deep water is a key component of the
Canfield ocean The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the composition of the ocean in the middle to late Proterozoic. In a paper published in 1998 in ''Nature'', Canfield argued that the ocean was anoxic and sulfidic dur ...
, a model of oceans during the Proterozoic period (known as the
Boring Billion The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is the time period between 1.8 and 0.8 billion years ago (Ga) spanning the middle Proterozoic eon, characterized by more or less tectonic stability, climatic stas ...
) proposed by
Donald Canfield Donald Eugene Canfield (born 1957) is a geochemist and Professor of Ecology at the University of Southern Denmark known for his work on the evolution of Earth's atmosphere and oceans. The Canfield ocean, a sulfidic partially oxic ocean existing d ...
, an American geologist, in 1998. There is still debate within the scientific community on both the duration and frequency of euxinic conditions in the ancient oceans. Euxinia is relatively rare in modern bodies of water, but does still happen in places like the Black Sea and certain
fjord In physical geography, a fjord or fiord () is a long, narrow inlet with steep sides or cliffs, created by a glacier. Fjords exist on the coasts of Alaska, Antarctica, British Columbia, Chile, Denmark, Germany, Greenland, the Faroe Islands, Ice ...
s.


Background

Euxinia most frequently occurred in the Earth's ancient oceans, but its distribution and frequency of occurrence are still under debate. The original model was that it was quite constant for approximately a billion years. Some meta-analyses have questioned how persistent euxinic conditions were based on relatively small
black shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especiall ...
deposits in a period when the ocean should have theoretically been preserving more organic matter. Before the
Great Oxygenation Event The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Paleoproterozoic era when the Earth's atmosphere ...
happened approximately 2.3 billion years ago, there was little free oxygen in either the atmosphere or the ocean. It was originally thought that the ocean accumulated oxygen soon after the atmosphere did, but this idea was challenged by Canfield in 1998 when he proposed that instead of the deep ocean becoming oxidizing, it became sulfidic. This hypothesis is partially based on the disappearance of
banded iron formation Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness a ...
s from the geological records 1.8 billion years ago. Canfield argued that although enough oxygen entered the atmosphere to erode sulfides in continental rocks, there was not enough oxygen to mix into the deep ocean. This would result in an anoxic deep ocean with an increased flux of sulfur from the continents. The sulfur would strip iron ions from the sea water, resulting in
iron sulfide Iron sulfide or Iron sulphide can refer to range of chemical compounds composed of iron and sulfur. Minerals By increasing order of stability: * Iron(II) sulfide, FeS * Greigite, Fe3S4 (cubic) * Pyrrhotite, Fe1−xS (where x = 0 to 0.2) (monocli ...
(pyrite), a portion of which was eventually buried. When sulfide became the major oceanic
reductant In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth meta ...
instead of iron, the deep water became euxinic. This has become what is known as the
Canfield ocean The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the composition of the ocean in the middle to late Proterozoic. In a paper published in 1998 in ''Nature'', Canfield argued that the ocean was anoxic and sulfidic dur ...
, a model backed by the increase in presence of δ34S in sedimentary
pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
and the discovery of evidence of the first sulfate
evaporite An evaporite () is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocea ...
s. Anoxia and sulfidic conditions often occur together. In anoxic conditions anaerobic,
sulfate reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
convert sulfate into sulfide, creating sulfidic conditions. The emergence of this metabolic pathway was very important in the pre-oxygenated oceans because adaptations to otherwise inhabitable or "toxic" environments like this may have played a role in the diversification of early eukaryotes and protozoa in the pre-Phanerozoic. Euxinia still occurs occasionally today, mostly in
meromictic lakes A meromictic lake is a lake which has layers of water that do not intermix. In ordinary, holomictic lakes, at least once each year, there is a physical mixing of the surface and the deep waters. The term ''meromictic'' was coined by the Austr ...
and silled basins such as the
Black Sea The Black Sea is a marginal mediterranean sea of the Atlantic Ocean lying between Europe and Asia, east of the Balkans, south of the East European Plain, west of the Caucasus, and north of Anatolia. It is bounded by Bulgaria, Georgia, Roma ...
and some fjords. It is rare in modern times; less than 0.5% of today's sea floor is euxinic.


Causes

The basic requirements for the formation of euxinic conditions are the absence of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
(O2), and the presence of sulfate ions (SO42−), organic matter (CH2O), and
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
capable of reducing sulfate to
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
(H2S). The bacteria utilize the
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
potential of sulfate as an
oxidant An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxid ...
and organic matter as a
reductant In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth meta ...
to generate chemical energy through
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
. The chemical species of interest can be represented via the reaction: 2CH2O + SO42− → H2S + 2HCO3 In the reaction above, the sulfur has been reduced to form the
byproduct A by-product or byproduct is a secondary product derived from a production process, manufacturing process or chemical reaction; it is not the primary product or service being produced. A by-product can be useful and marketable or it can be consid ...
hydrogen sulfide, the characteristic compound present in water under euxinic conditions. Although sulfate reduction occurs in waters throughout the world, most modern-day aquatic habitats are oxygenated due to
photosynthetic Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in c ...
production of oxygen and
gas exchange Gas exchange is the physical process by which gases move passively by Diffusion#Diffusion vs. bulk flow, diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liqui ...
between the atmosphere and surface water. Sulfate reduction in these environments is often limited to occurring in
seabed The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as 'seabeds'. The structure of the seabed of the global ocean is governed by plate tectonics. Most of ...
sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand an ...
s that have a strong
redox gradient A redox gradient is a series of reduction-oxidation (redox) reactions sorted according to redox potential. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients ...
and become
anoxic The term anoxia means a total depletion in the level of oxygen, an extreme form of hypoxia or "low oxygen". The terms anoxia and hypoxia are used in various contexts: * Anoxic waters, sea water, fresh water or groundwater that are depleted of diss ...
at some depth below the sediment-water interface. In the ocean the rate of these reactions is no
limited
by sulfate, which has been present in large quantities throughout the oceans for the past 2.1 billion years. The
Great Oxygenation Event The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Paleoproterozoic era when the Earth's atmosphere ...
increased atmospheric oxygen concentrations such that oxidative
weathering Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
of
sulfides Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds la ...
became a major source of sulfate to the ocean. Despite plentiful sulfate ions being present in solution, they are not preferentially used by most bacteria. The reduction of sulfate does not give as much energy to an organism as reduction of oxygen or
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
, so the concentrations of these other elements must be nearly zero for sulfate-reducing bacteria to out-compete
aerobic Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cellu ...
and
denitrifying bacteria Denitrifying bacteria are a diverse group of bacteria that encompass many different phyla. This group of bacteria, together with denitrifying fungi and archaea, is capable of performing denitrification as part of the nitrogen cycle. Denitrification ...
. In most modern settings these conditions only occur in a small portion of sediments, resulting in insufficient concentrations of hydrogen sulfide to form euxinic waters. Conditions required for the formation of persistent euxinia include
anoxic waters Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. Anox ...
, high
nutrient A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excret ...
levels, and a
stratified Stratification may refer to: Mathematics * Stratification (mathematics), any consistent assignment of numbers to predicate symbols * Data stratification in statistics Earth sciences * Stable and unstable stratification * Stratification, or st ...
water column. These conditions are not all-inclusive and are based largely on modern observations of euxinia. Conditions leading up to and triggering large-scale euxinic events, such as the
Canfield ocean The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the composition of the ocean in the middle to late Proterozoic. In a paper published in 1998 in ''Nature'', Canfield argued that the ocean was anoxic and sulfidic dur ...
, are likely the result of multiple interlinking factors, many of which have been inferred through studies of the
geologic record The geologic record in stratigraphy, paleontology and other natural sciences refers to the entirety of the layers of rock strata. That is, deposits laid down by volcanism or by deposition of sediment derived from weathering detritus (clays, sand ...
at relevant locations. The formation of stratified anoxic waters with high nutrient levels is influenced by a variety of global and local-scale phenomena such as the presence of nutrient traps and a warming climate.


Nutrient traps

In order for euxinic conditions to persist, a positive feedback loop must perpetuate organic matter export to bottom waters and reduction of sulfate under anoxic conditions. Organic matter export is driven by high levels of primary production in the
photic zone The photic zone, euphotic zone, epipelagic zone, or sunlight zone is the uppermost layer of a body of water that receives sunlight, allowing phytoplankton to perform photosynthesis. It undergoes a series of physical, chemical, and biological proc ...
, supported by a continual supply of nutrients to the oxic surface waters. A natural source of nutrients, such as phosphate (), comes from
weathering Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
of rocks and subsequent transport of these dissolved nutrients via rivers. In a nutrient trap, increased input of phosphate from rivers, high rates of recycling of phosphate from sediments, and slow vertical mixing in the water column allow for euxinic conditions to persist.


Geography

The arrangement of the continents has changed over time due to
plate tectonics Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
, resulting in the
bathymetry Bathymetry (; ) is the study of underwater depth of ocean floors (''seabed topography''), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water de ...
of ocean basins also changing over time. The shape and size of the basins influences the circulation patterns and concentration of nutrients within them. Numerical models simulating past arrangements of continents have shown that nutrient traps can form in certain scenarios, increasing local concentrations of phosphate and setting up potential euxinic conditions. On a smaller scale, silled basins often act as nutrient traps due to their estuarine circulation. Estuarine circulation occurs where surface water is replenished from river input and precipitation, causing an outflow of surface waters from the basin, while deep water flows into the basin over the sill. This type of circulation allows for anoxic, high nutrient bottom water to develop within the basin.


Stratification

Stratified waters, in combination with slow vertical mixing, are essential to maintaining euxinic conditions. Stratification occurs when two or more water masses with different densities occupy the same basin. While the less dense surface water can exchange gas with the oxygen-rich atmosphere, the denser bottom waters maintain low oxygen content. In the modern oceans,
thermohaline circulation Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective ''thermohaline'' derives from '' thermo-'' referring to temper ...
and
upwelling Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nutr ...
prevent the oceans from maintaining anoxic bottom waters. In a silled basin, the stable stratified layers only allow surface water to flow out of the basin while the deep water remains anoxic and relatively unmixed. During an intrusion of dense saltwater however, the nutrient-rich bottom water upwells, causing increased
productivity Productivity is the efficiency of production of goods or services expressed by some measure. Measurements of productivity are often expressed as a ratio of an aggregate output to a single input or an aggregate input used in a production proces ...
in the surface, further enhancing the nutrient trap due to
biological pump The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments.Sigman DM & GH ...
ing. Rising sea level can exacerbate this process by increasing the amount of deep water entering a silled basin and enhancing estuarine circulation.


Warming climate

A warming climate increases surface temperatures of waters which effects multiple aspects of euxinic water formation. As waters warm, the
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
of oxygen decreases, allowing for deep anoxic waters to form more readily. Additionally, the warmer water causes increased respiration of organic matter leading to further oxygen depletion. Higher temperatures enhance the hydrologic cycle, increasing evaporation from bodies of water, resulting in increased precipitation. This causes higher rates of weathering of rocks and therefore higher nutrient concentrations in river outflows. The nutrients allow for more productivity resulting in more
marine snow In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to ...
and subsequently lower oxygen in deep waters due to increased respiration. Volcanism has also been proposed as a factor in creating euxinic conditions. The
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
(CO2) released during
volcanic A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
outgassing causes
global warming In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to E ...
which has cascading effects on the formation of euxinic conditions.


Evidence for euxinic events


Black shale

Black shales are organic rich, microlaminated sedimentary rocks often associated with bottom water anoxia. This is because anoxia slows the degradation of organic matter, allowing for greater burial in the sediments. Other evidence for anoxic burial of black shale includes the lack of
bioturbation Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a pr ...
, meaning that there were no organisms burrowing into the sediment because there was no oxygen for respiration. There must also be a source of organic matter for burial, generally from production near the oxic surface. Many papers discussing ancient euxinic events use the presence of black shale as a preliminary proxy for anoxic bottom waters, but their presence does not in and of itself indicate euxinia or even strong anoxia. Generally geochemical testing is needed to provide better evidence for conditions.


Geochemistry

Some researchers study the occurrence of euxinia in ancient oceans because it was more prevalent then than it is today. Since ancient oceans cannot be directly observed, scientists use geology and chemistry to find evidence in
sedimentary rock Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
created under euxinic conditions. Some of these techniques come from studying modern examples of euxinia, while others are derived from geochemistry. Though modern euxinic environments have geochemical properties in common with ancient euxinic oceans, the physical processes causing euxinia most likely vary between the two.


Isotopes

Stable isotope ratio The term stable isotope has a meaning similar to stable nuclide, but is preferably used when speaking of nuclides of a specific element. Hence, the plural form stable isotopes usually refers to isotopes of the same element. The relative abundanc ...
s can be used to infer the environmental conditions during the formation of sedimentary rock. Using
stoichiometry Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equal ...
and knowledge of
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
pathways, paleogeologists can use
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s ratios of elements to determine the chemical composition of the water and sediments when burial occurred. Sulfur isotopes are frequently used to look for evidence of ancient euxinia. Low δ34S in black shales and sedimentary rocks provides positive evidence for euxinic formation conditions. The pyrite (FeS2) in euxinic basins typically has higher concentrations of light sulfur isotopes than pyrite in the modern ocean. The reduction of sulfate to sulfide favors the lighter sulfur isotopes (32S) and becomes depleted in the heavier isotopes (34S). This lighter sulfide then bonds with Fe2+ to form FeS2 which is then partially preserved in the sediments. In most modern systems, sulfate eventually becomes limiting, and the isotopic weights of sulfur in both sulfate and sulfide (preserved as FeS2) become equal. Molybdenum (Mo), the most common transition metal ion in modern seawater, is also used to look for evidence for euxinia. Weathering of rocks provides an input of MoO42– into oceans. Under oxic conditions, MoO42– is very unreactive, but in modern euxinic environments such as the
Black Sea The Black Sea is a marginal mediterranean sea of the Atlantic Ocean lying between Europe and Asia, east of the Balkans, south of the East European Plain, west of the Caucasus, and north of Anatolia. It is bounded by Bulgaria, Georgia, Roma ...
, molybdenum precipitates out as oxythiomolybdate (MoO4−xSx2– ). The isotope ratio for Molybdenum (δ97/95 Mo) in euxinic sediments appears to be higher than in oxic conditions. Additionally, the concentration of molybdenum is frequently correlated with the concentration of organic matter in euxinic sediments. The use of Mo to indicate euxinia is still under debate.


Trace-element enrichment

Under euxinic conditions, some trace elements such as Mo, U, V, Cd, Cu, Tl, Ni, Sb, and Zn, become insoluble. This means that euxinic sediments would contain more of the solid form of these elements than the background seawater. For example, Molybdenum and other trace metals become insoluble in anoxic and sulfidic conditions, so over time the seawater becomes depleted of trace metals under conditions of persistent euxinia, and preserved sediments are relatively enriched with molybdenum and other trace elements.


Organic biomarkers

Bacteria such as
green sulfur bacteria The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthesi ...
and
purple sulfur bacteria The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including ...
, which exist where the photic zone overlaps with euxinic water masses, leave pigments behind in sediments. These pigments can be used to identify past euxinic conditions. The pigments used to identify past presence of green sulfur bacteria are chlorobactane and isorenieratene. The pigments used to identify past presence of purple sulfur bacteria is
okenane Okenane, the diagenetic end product of okenone, is a biomarker for Chromatiaceae, the purple sulfur bacteria. These anoxygenic phototrophs use light for energy and sulfide as their electron donor and sulfur source. Discovery of okenane in marine ...
.


Iron geochemistry

Pyrite The mineral pyrite (), or iron pyrite, also known as fool's gold, is an iron sulfide with the chemical formula Iron, FeSulfur, S2 (iron (II) disulfide). Pyrite is the most abundant sulfide mineral. Pyrite's metallic Luster (mineralogy), lust ...
(FeS2) is a mineral formed by the reaction of hydrogen sulfide (H2S) and bioreactive iron (Fe2+). In oxic bottom waters pyrite can only form in sediments where H2S is present. However, in iron-rich euxinic environments, pyrite formation can occur at higher rates in both the water column and in sediments due to higher concentrations of H2S. Therefore the presence of euxinic conditions can be inferred by the ratio of pyrite-bound iron to the total iron in sediments. High ratios of pyrite-bound iron can be used as an indicator of past euxinic conditions. Similarly, if >45% of the bioreactive iron in sediments is pyrite-bound, then anoxic or euxinic conditions can be inferred. While useful, these methods do not provide definitive proof of euxinia because not all euxinic waters have the same concentrations of bioreactive iron available. These relationships have been found to be present in the modern euxinic Black Sea.


Euxinic events in Earth's history


Proterozoic

The Proterozoic is the transition era between anoxic and oxygenated oceans. The classic model is that the end of the
Banded iron formation Banded iron formations (also known as banded ironstone formations or BIFs) are distinctive units of sedimentary rock consisting of alternating layers of iron oxides and iron-poor chert. They can be up to several hundred meters in thickness a ...
s (BIFs) was due to the injection of oxygen into the deep ocean, an approximately 0.6 billion year lag behind the
Great Oxygenation Event The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Paleoproterozoic era when the Earth's atmosphere ...
. Canfield, however, argued that anoxia lasted much longer, and the end of the banded iron formations was due to the introduction of sulfide. Supporting Canfield's original hypothesis, 1.84 billion year old sedimentary records have been found in the Animike group in Canada that exhibit close to full pyritization on top of the last of the banded iron formations, showing evidence of a transition to euxinic conditions in that basin. In order for full pyritization to happen, nearly all of the sulfate in the water was reduced to sulfide, which stripped the iron from the water, forming pyrite. Because this basin was open to the ocean, deep euxinia was interpreted as being a widespread phenomena. This euxinia is hypothesized to have lasted until about 0.8 billion years ago, making basin bottom euxinia a potentially widespread feature throughout the
Boring Billion The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is the time period between 1.8 and 0.8 billion years ago (Ga) spanning the middle Proterozoic eon, characterized by more or less tectonic stability, climatic stas ...
. Further evidence for euxinia was discovered in the McArthur Basin in Australia, where similar iron chemistry was found. The degree of pyritization and the δ34S were both high, supporting the presence of anoxia and sulfide, as well as the depletion of sulfate. A different study found biomarkers for
green sulfur bacteria The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthesi ...
and
purple sulfur bacteria The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including ...
in the same area, providing further evidence for the reduction of sulfate to hydrogen sulfide. Molybdenum isotopes have been used to examine the distribution of euxinia in the Proterozoic eon, and suggest that perhaps euxinia was not as widespread as Canfield initially postulated. Bottom waters may have been more widely suboxic than anoxic, and there could have been negative feedback between euxinia and the high levels of surface primary production needed to sustain euxinic conditions. Further work has suggested that from 700 million years ago (late Proterozoic) and onward, the deep oceans may have actually been anoxic and iron rich with conditions similar to those during the formation of BIFs.


Phanerozoic

There is evidence for multiple euxinic events during the Phanerozoic. It is most likely that euxinia was periodic during the Paleozoic and Mesozoic, but geologic data is too sparse to draw any large scale conclusions. In this eon, there is some evidence that euxinic events are potentially linked with mass extinction events including the
Late Devonian The Devonian ( ) is a geologic period and system of the Paleozoic era, spanning 60.3 million years from the end of the Silurian, million years ago (Mya), to the beginning of the Carboniferous, Mya. It is named after Devon, England, wher ...
and Permian–Triassic.


Paleozoic

The periodic presence of euxinic conditions in the Lower Cambrian has been supported by evidence found on the Yangtze platform in South China. Sulfur isotopes during the transition from Proterozoic to Phanerozoic give evidence for widespread euxinia, perhaps lasting throughout the Cambrian period. Towards the end of the Lower Cambrian, the euxinic chemocline grew deeper until euxinia was present only in the sediments, and once sulfate became limiting, conditions became anoxic instead of euxinic. Some areas eventually became oxic, while others eventually returned to euxinic for some time. Geological records from the paleozoic in the Selwyn Basin in Northern Canada have also shown evidence for episodic stratification and mixing, where, using δ34S, it was determined that hydrogen sulfide was more prevalent than
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ar ...
. Although this was not originally attributed to euxinia, further studies found that seawater in that time likely had low concentrations of sulfate, meaning that the sulfur in the water was primarily in the form of sulfide. This combined with organic-rich black shale provide strong evidence for euxinia. There is similar evidence in the black shales in the mid-continent North America from the Devonian and early Mississippian periods. Isorenieratene, a pigment known as a proxy for an anoxic photic zone, has been found in the geological record in Illinois and Michigan. Although present, these events were probably ephemeral and did not last for longer periods of time. Similar periodic evidence of euxinia can also be found in the Sunbury shales of Kentucky. Evidence for euxinia has also been tied to the
Kellwasser event The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major exti ...
s of the Late Devonian Extinction event. Euxinia in basinal waters in what is now central Europe (Germany, Poland, and France) persisted for part of the late Devonian, and may have spread up into shallow waters, contributing to the extinction event. There was perhaps a period of oxygenation of bottom waters during the
Carboniferous The Carboniferous ( ) is a geologic period and system of the Paleozoic that spans 60 million years from the end of the Devonian Period million years ago ( Mya), to the beginning of the Permian Period, million years ago. The name ''Carbonifero ...
, most likely between the Late Devonian Extinction and the Permian-Triassic Extinction, at which point euxinia would be very rare in the paleo oceans. The
Permian–Triassic extinction event The Permian–Triassic (P–T, P–Tr) extinction event, also known as the Latest Permian extinction event, the End-Permian Extinction and colloquially as the Great Dying, formed the boundary between the Permian and Triassic geologic periods, as ...
may also have some ties to euxinia, with hypercapnia and hydrogen sulfide toxicity killing off many species. Presence of a biomarker for anaerobic photosynthesis by green sulfur bacteria has been found spanning from the Permian to early Triassic in sedimentary rock in both Australia and China, meaning that euxinic conditions extended up quite shallow in the water column, contributing to the extinctions and perhaps even slowed the recovery. It is uncertain, however, just how widespread photic zone euxinia was during this period. Modelers have hypothesized that due to environmental conditions anoxia and sulfide may have been brought up from a deep, vast euxinic reservoir in
upwelling Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nutr ...
areas, but stable, gyre-like areas remained oxic.


Mesozoic

The Mesozoic is well known for its distinct Ocean Anoxic Events (OAEs) which resulted in the burial of layers of black shale. Although these OAEs are not stand alone evidence for euxinia, many do contain biomarkers which support euxinic formation. Again, evidence is not universal. OAEs may have spurred the spread of existing euxinia, especially in upwelling regions or semi-restricted basins, but photic zone euxinia did not happen everywhere.


Cenozoic

Few episodes of euxinia are evident in the sedimentary record during the Cenozoic. Since the end of the Cretaceous OAEs, it is most likely that the oceanic bottom waters have stayed oxic.


Modern euxinia

Euxinic conditions have nearly vanished from Earth's open-ocean environments, but a few small scale examples still exist today. Many of these locations share common biogeochemical characteristics. For example, low rates of overturning and vertical mixing of the total water column is common in euxinic bodies of water. Small surface area to depth ratios allow multiple stable layers to form while limiting wind-driven overturning and thermohaline circulation. Furthermore, restricted mixing enhances stratified layers of high nutrient density which are reinforced by biological recycling. Within the chemocline, highly specialized organisms, such as
green sulfur bacteria The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthesi ...
take advantage of the strong redox potential gradient and minimal sunlight.


The Black Sea

The Black Sea is a commonly used modern model for understanding biogeochemical processes that occur under euxinic conditions. It is thought to represent the conditions of Earth's proto-oceans and thus assists in the interpretation of oceanic proxies. Black Sea sediment contains redox reactions to depths of tens of meters, compared to single centimeters in the open ocean. This unique feature is important for understanding the behavior of the redox cascade under euxinic conditions.Stewart, Keith, et al. "Oxic, suboxic, and anoxic conditions in the Black Sea." ''The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement''. Springer Netherlands, 2007. 1-21. The only connection between the open ocean and the Black Sea is the
Bosphorus Strait The Bosporus Strait (; grc, Βόσπορος ; tr, İstanbul Boğazı 'Istanbul strait', colloquially ''Boğaz'') or Bosphorus Strait is a natural strait and an internationally significant waterway located in Istanbul in northwestern T ...
, through which dense Mediterranean waters are imported. Subsequently, numerous rivers, such as the
Danube The Danube ( ; ) is a river that was once a long-standing frontier of the Roman Empire and today connects 10 European countries, running through their territories or being a border. Originating in Germany, the Danube flows southeast for , pa ...
,
Don Don, don or DON and variants may refer to: Places *County Donegal, Ireland, Chapman code DON *Don (river), a river in European Russia *Don River (disambiguation), several other rivers with the name *Don, Benin, a town in Benin *Don, Dang, a vill ...
,
Dnieper } The Dnieper () or Dnipro (); , ; . is one of the major transboundary rivers of Europe, rising in the Valdai Hills near Smolensk, Russia, before flowing through Belarus and Ukraine to the Black Sea. It is the longest river of Ukraine and B ...
, and
Dniester The Dniester, ; rus, Дне́стр, links=1, Dnéstr, ˈdⁿʲestr; ro, Nistru; grc, Τύρᾱς, Tyrās, ; la, Tyrās, la, Danaster, label=none, ) ( ,) is a transboundary river in Eastern Europe. It runs first through Ukraine and th ...
, drain fresh water into the Black Sea, which floats on top of the more dense Mediterranean water, causing a strong, stratified water column. This stratification is maintained by a strong
pycnocline A pycnocline is the Cline (hydrology), cline or layer where the density gradient () is greatest within a body of water. An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effec ...
which restricts ventilation of deep waters and results in an intermediate layer called the
chemocline A chemocline is a type of cline, a layer of fluid with different properties, characterized by a strong, vertical chemistry gradient within a body of water. In bodies of water where chemoclines occur, the cline separates the upper and lower layers, ...
, a sharp boundary separating oxic surface waters from anoxic bottom waters usually between 50m and 100m depth, with interannual variation attributed to large scale changes in temperature. Well-mixed, oxic conditions exist above the chemocline and sulfidic conditions are dominant below. Surface oxygen and deep water sulfide do not overlap via vertical mixing, but horizontal entrainment of oxygenated waters and vertical mixing of oxidized manganese into sulfidic waters may occur near the Bosphorus Strait inlet. Manganese and iron oxides likely oxidize hydrogen sulfide near the chemocline, resulting in the decrease in H2S concentrations as one approaches the chemocline from below.


Meromictic lakes

Meromictic lake A meromictic lake is a lake which has layers of water that do not intermix. In ordinary, holomictic lakes, at least once each year, there is a physical mixing of the surface and the deep waters. The term ''meromictic'' was coined by the Austri ...
s are poorly mixed and anoxic bodies of water with strong vertical stratification. While meromictic lakes are frequently categorized as bodies of water with the potential for euxinic conditions, many do not exhibit euxinia. Meromictic lakes are infamous for
limnic eruption A limnic eruption, also known as a lake overturn, is a very rare type of natural disaster in which dissolved carbon dioxide () suddenly erupts from deep lake waters, forming a gas cloud capable of suffocating wildlife, livestock, and humans. A lim ...
s. These events usually coincide with nearby tectonic or volcanic activity that disturbs the otherwise stable stratification of meromictic lakes. This can result in the release of immense concentrations of stored toxic gasses from the anoxic bottom waters, such as CO2 and H2S, especially from euxinic meromictic lakes. In high enough concentration, these limnic explosions can be deadly to humans and animals, such as the
Lake Nyos disaster On 21 August 1986, a limnic eruption at Lake Nyos in northwestern Cameroon killed 1,746 people and 3,500 livestock. The eruption triggered the sudden release of about 100,000–300,000 tons (1.6 million tons, according to some sources) of ca ...
in 1986.


North Sea fjords

Some
fjord In physical geography, a fjord or fiord () is a long, narrow inlet with steep sides or cliffs, created by a glacier. Fjords exist on the coasts of Alaska, Antarctica, British Columbia, Chile, Denmark, Germany, Greenland, the Faroe Islands, Ice ...
s develop euxinia if the connection to the open ocean is constricted, similar to the case of the Black Sea. This constriction prohibits relatively dense, oxygen-rich oceanic water from mixing with the bottom water of the fjord, which leads to stable stratified layers in the fjord. Low salinity melt water forms a lens of fresh, low density water on top of a more dense mass of bottom water. Ground sources of sulfur are also an important cause for euxinia in fjords.


Framvaren Fjord

This fjord was born as a glacial lake that was separated from the open ocean (the North Sea) when it was lifted during glacial rebound. A shallow channel (2m deep) was dug in 1850, providing a marginal connection to the North Sea. A strong pycnocline separates fresh surface water from dense, saline bottom water, and this pycnocline reduces mixing between the layers. Anoxic conditions persist below the chemocline at 20m, and the fjord has the highest levels of hydrogen sulfide in the anoxic marine world. Like the Black Sea, vertical overlap of oxygen and sulfur is limited, but the decline of H2S approaching the chemocline from below is indicative of oxidation of H2S, which has been attributed to manganese and iron oxides, photo-autotrophic bacteria, and entrainment of oxygen horizontally from the boundaries of the fjord. These oxidation processes are similar to those present in the Black Sea. Two strong seawater intrusion events have occurred through the channel in recent history (1902 and 1942). Seawater intrusions to fjords force dense, salty, oxygen-rich water into the typically anoxic, sulfidic bottom waters of euxinic fjords. These events result in a temporary disturbance to the chemocline, raising the depth at which H2S is detected. The breakdown of the chemocline causes H2S to react with dissolved oxygen in a redox reaction. This decreases the concentration of dissolved oxygen in the biologically active photic zone which can result in basin-scale fish die-offs. The 1942 event, in particular, was strong enough to chemically reduce the vast majority of oxygen and elevate the chemocline to the air-water interface. This caused a temporary state of total anoxia in the fjord, and resulted in dramatic fish mortality.


Mariager Fjord

This fjord is marked by a highly mobile chemocline with a depth that is thought to be related to temperature effects. Local reports of strong rotten egg smell- the smell of sulfur- during numerous summers around the fjord provide evidence that, like the Framvaren fjord, the chemocline has breached the surface of the fjord at least five times in the last century. Sediments export during these events increased the concentrations of dissolved phosphates, inorganic bioavailable nitrogen, and other nutrients, resulting in a
harmful algal bloom A harmful algal bloom (HAB) (or excessive algae growth) is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes ...
.


Cariaco Basin

The
Cariaco Basin The Cariaco Basin lies off the north central coast of Venezuela and forms the Gulf of Cariaco. It is bounded on the east by Margarita Island, Cubagua Island, and the Araya Peninsula; on the north by Tortuga Island and the Tortuga Banks; on the w ...
in Venezuela has been used to study the cycle of organic material in euxinic marine environments. An increase in productivity coincident with post glacial nutrient loading probably caused a transition from oxic to anoxic and subsequently euxinic conditions around 14.5 thousand years ago. High productivity at the surface produces a rain of particulate organic matter to the sub surface where anoxic, sulfidic conditions persist. The organic matter in this region is oxidized with sulfate, producing reduced sulfur (H2S) as a waste product. Free sulfur exists deep in the water column and up to 6m in depth in the sediment.


See also

*
Anoxic event Oceanic anoxic events or anoxic events ( anoxia conditions) describe periods wherein large expanses of Earth's oceans were depleted of dissolved oxygen (O2), creating toxic, euxinic (anoxic and sulfidic) waters. Although anoxic events have not ...
*
Canfield ocean The Canfield Ocean model was proposed by geochemist Donald Canfield to explain the composition of the ocean in the middle to late Proterozoic. In a paper published in 1998 in ''Nature'', Canfield argued that the ocean was anoxic and sulfidic dur ...
*
Redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
*
Boring Billion The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is the time period between 1.8 and 0.8 billion years ago (Ga) spanning the middle Proterozoic eon, characterized by more or less tectonic stability, climatic stas ...


References

{{reflist Environmental science Environmental chemistry Oceanography Chemical oceanography Bioindicators Aquatic ecology Water quality indicators