HOME

TheInfoList



OR:

In mathematics, the Erlangen program is a method of characterizing
geometries Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Types, methodologies, and terminologies of geometry. ...
based on
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
and
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
. It was published by
Felix Klein Felix Christian Klein (; ; 25 April 1849 â€“ 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is named after the University Erlangen-Nürnberg, where Klein worked. By 1872,
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geo ...
had emerged, but without a way to determine their hierarchy and relationships. Klein's method was fundamentally innovative in three ways: :* Projective geometry was emphasized as the unifying frame for all other geometries considered by him. In particular,
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
was more restrictive than
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is i ...
, which in turn is more restrictive than projective geometry. :* Klein proposed that
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, a branch of mathematics that uses algebraic methods to abstract the idea of
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
, was the most useful way of organizing geometrical knowledge; at the time it had already been introduced into the
theory of equations In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equation (mathematics), equations defined by a polynomial. The main problem of the theory of equations was to know when an al ...
in the form of
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
. :* Klein made much more explicit the idea that each geometrical language had its own, appropriate concepts, thus for example projective geometry rightly talked about
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...
s, but not about
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
s or
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s because those notions were not invariant under
projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
s (something familiar in geometrical perspective). The way the multiple languages of geometry then came back together could be explained by the way
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s of a
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
related to each other. Later,
Élie Cartan Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He ...
generalized Klein's homogeneous model spaces to
Cartan connection In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the ...
s on certain
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
s, which generalized
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
.


The problems of nineteenth century geometry

Since
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
, geometry had meant the geometry of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
of two dimensions (
plane geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set ...
) or of three dimensions (
solid geometry Solid geometry or stereometry is the geometry of Three-dimensional space, three-dimensional Euclidean space (3D space). A solid figure is the region (mathematics), region of 3D space bounded by a two-dimensional closed surface; for example, a ...
). In the first half of the nineteenth century there had been several developments complicating the picture. Mathematical applications required geometry of four or more dimensions; the close scrutiny of the foundations of the traditional Euclidean geometry had revealed the independence of the
parallel postulate In geometry, the parallel postulate is the fifth postulate in Euclid's ''Elements'' and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior ...
from the others, and
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
had been born. Klein proposed an idea that all these new geometries are just special cases of the
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
, as already developed by
Poncelet The poncelet (symbol p) is an obsolete unit of power, once used in France and replaced by (ch, metric horsepower). The unit was named after Jean-Victor Poncelet.François Cardarelli, ''Encyclopaedia of Scientific Units, Weights and Measures: T ...
, Möbius, Cayley and others. Klein also strongly suggested to mathematical ''physicists'' that even a moderate cultivation of the projective purview might bring substantial benefits to them. With every geometry, Klein associated an underlying group of symmetries. The hierarchy of geometries is thus mathematically represented as a hierarchy of these groups, and hierarchy of their invariants. For example, lengths, angles and areas are preserved with respect to the
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
of symmetries, while only the
incidence structure In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the Point (geometry), points and Line (geometry), lines of the Euclidean plane as t ...
and the
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points , , , on a line, their cross ratio is defin ...
are preserved under the most general projective transformations. A concept of parallelism, which is preserved in
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is i ...
, is not meaningful in
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
. Then, by abstracting the underlying groups of symmetries from the geometries, the relationships between them can be re-established at the group level. Since the group of affine geometry is a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the group of projective geometry, any notion invariant in projective geometry is ''a priori'' meaningful in affine geometry; but not the other way round. If you remove required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).


Homogeneous spaces

In other words, the "traditional spaces" are
homogeneous space In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and ...
s; but not for a uniquely determined group. Changing the group changes the appropriate geometric language. In today's language, the groups concerned in classical geometry are all very well known as
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s: the classical groups. The specific relationships are quite simply described, using technical language.


Examples

For example, the group of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
in ''n'' real-valued dimensions is the symmetry group of ''n''-dimensional real
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
(the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
of degree , quotiented by scalar matrices). The
affine group In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real nu ...
will be the subgroup respecting (mapping to itself, not fixing pointwise) the chosen hyperplane at infinity. This subgroup has a known structure (
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' sem ...
of the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
of degree ''n'' with the subgroup of
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
s). This description then tells us which properties are 'affine'. In Euclidean plane geometry terms, being a parallelogram is affine since affine transformations always take one parallelogram to another one. Being a circle is not affine since an affine shear will take a circle into an ellipse. To explain accurately the relationship between affine and Euclidean geometry, we now need to pin down the group of Euclidean geometry within the affine group. The
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
is in fact (using the previous description of the affine group) the semi-direct product of the orthogonal (rotation and reflection) group with the translations. (See
Klein geometry In mathematics, a Klein geometry is a type of geometry motivated by Felix Klein in his influential Erlangen program. More specifically, it is a homogeneous space ''X'' together with a transitive action on ''X'' by a Lie group ''G'', which acts as ...
for more details.)


Influence on later work

The long-term effects of the Erlangen program can be seen all over pure mathematics (see tacit use at
congruence (geometry) In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. More formally, two sets of points are called congruent if, and only if, one can be ...
, for example); and the idea of transformations and of synthesis using groups of
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
has become standard in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
. When
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
is routinely described in terms of properties invariant under
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
, one can see the underlying idea in operation. The groups involved will be infinite-dimensional in almost all cases – and not
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s – but the philosophy is the same. Of course this mostly speaks to the pedagogical influence of Klein. Books such as those by H.S.M. Coxeter routinely used the Erlangen program approach to help 'place' geometries. In pedagogic terms, the program became
transformation geometry In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and properties that are invariant under the ...
, a mixed blessing in the sense that it builds on stronger intuitions than the style of
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
, but is less easily converted into a
logical system A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in math ...
. In his book ''Structuralism'' (1970)
Jean Piaget Jean William Fritz Piaget (, ; ; 9 August 1896 – 16 September 1980) was a Swiss psychologist known for his work on child development. Piaget's theory of cognitive development and epistemological view are together called genetic epistemology. ...
says, "In the eyes of contemporary structuralist mathematicians, like Bourbaki, the Erlangen program amounts to only a partial victory for structuralism, since they want to subordinate all mathematics, not just geometry, to the idea of
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
." For a geometry and its group, an element of the group is sometimes called a
motion In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an o ...
of the geometry. For example, one can learn about the
Poincaré half-plane model In non-Euclidean geometry, the Poincaré half-plane model is a way of representing the hyperbolic plane using points in the familiar Euclidean plane. Specifically, each point in the hyperbolic plane is represented using a Euclidean point with co ...
of
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
through a development based on hyperbolic motions. Such a development enables one to methodically prove the ultraparallel theorem by successive motions.


Abstract returns from the Erlangen program

Quite often, it appears there are two or more distinct
geometries Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Types, methodologies, and terminologies of geometry. ...
with
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
s. There arises the question of reading the Erlangen program from the ''abstract'' group, to the geometry. One example: oriented (i.e., reflections not included)
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
(i.e., the surface of an ''n''-sphere with opposite points identified) and oriented
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
(the same
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
, but with opposite points not identified) have
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
, SO(''n''+1) for even ''n''. These may appear to be distinct. It turns out, however, that the geometries are very closely related, in a way that can be made precise. To take another example, elliptic geometries with different radii of curvature have isomorphic automorphism groups. That does not really count as a critique as all such geometries are isomorphic. General
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
falls outside the boundaries of the program.
Complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
, dual and double (also known as split-complex) numbers appear as homogeneous spaces SL(2,R)/H for the group SL(2,R) and its subgroups H=A, N, K. The group SL(2,R) acts on these homogeneous spaces by
linear fractional transformation In mathematics, a linear fractional transformation is, roughly speaking, an inverse function, invertible transformation of the form : z \mapsto \frac . The precise definition depends on the nature of , and . In other words, a linear fractional t ...
s and a large portion of the respective geometries can be obtained in a uniform way from the Erlangen program. Some further notable examples have come up in physics. Firstly, ''n''-dimensional
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
, ''n''-dimensional de Sitter space and (''n''−1)-dimensional
inversive geometry In geometry, inversive geometry is the study of ''inversion'', a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry ...
all have isomorphic automorphism groups, :\mathrm(n,1)/\mathrm_2,\ the orthochronous Lorentz group, for . But these are apparently distinct geometries. Here some interesting results enter, from the physics. It has been shown that physics models in each of the three geometries are "dual" for some models. Again, ''n''-dimensional
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a symmetric_space, maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are na ...
and (''n''−1)-dimensional conformal space with "Lorentzian" signature (in contrast with conformal space with "Euclidean" signature, which is identical to
inversive geometry In geometry, inversive geometry is the study of ''inversion'', a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry ...
, for three dimensions or greater) have isomorphic automorphism groups, but are distinct geometries. Once again, there are models in physics with "dualities" between both spaces. See AdS/CFT for more details. The covering group of SU(2,2) is isomorphic to the covering group of SO(4,2), which is the symmetry group of a 4D conformal Minkowski space and a 5D anti-de Sitter space and a complex four-dimensional twistor space. The Erlangen program can therefore still be considered fertile, in relation with dualities in physics. In the seminal paper which introduced categories,
Saunders Mac Lane Saunders Mac Lane (August 4, 1909 – April 14, 2005), born Leslie Saunders MacLane, was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near w ...
and
Samuel Eilenberg Samuel Eilenberg (September 30, 1913 – January 30, 1998) was a Polish-American mathematician who co-founded category theory (with Saunders Mac Lane) and homological algebra. Early life and education He was born in Warsaw, Kingdom of Poland to ...
stated: "This may be regarded as a continuation of the Klein Erlanger Programm, in the sense that a geometrical space with its group of transformations is generalized to a category with its algebra of mappings." Relations of the Erlangen program with work of
Charles Ehresmann Charles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and category theory. He was an early member of the Bourbaki group, and is known for his work on the differentia ...
on
groupoids In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: * '' Group'' with a partial fun ...
in geometry is considered in the article below by Pradines. In
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
, the Erlangen program also served as an inspiration for
Alfred Tarski Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician ...
in his analysis of logical notions.Luca Belotti, ''Tarski on Logical Notions'', Synthese, 404-413, 2003.


References

*Klein, Felix (1872) "A comparative review of recent researches in geometry". Complete English Translation is here https://arxiv.org/abs/0807.3161. *Sharpe, Richard W. (1997) ''Differential geometry: Cartan's generalization of Klein's Erlangen program'' Vol. 166. Springer. * Heinrich Guggenheimer (1977) ''Differential Geometry'', Dover, New York, . :Covers the work of Lie, Klein and Cartan. On p. 139 Guggenheimer sums up the field by noting, "A Klein geometry is the theory of geometric invariants of a transitive transformation group (Erlangen program, 1872)". * Thomas Hawkins (1984) "The ''Erlanger Program'' of Felix Klein: Reflections on Its Place In the History of Mathematics",
Historia Mathematica ''Historia Mathematica: International Journal of History of Mathematics'' is an academic journal on the history of mathematics published by Elsevier. It was established by Kenneth O. May in 1971 as the free newsletter ''Notae de Historia Mathemat ...
11:442–70. * * Lizhen Ji and Athanase Papadopoulos (editors) (2015) ''Sophus Lie and Felix Klein: The Erlangen program and its impact in mathematics and physics'', IRMA Lectures in Mathematics and Theoretical Physics 23, European Mathematical Society Publishing House, Zürich. *
Felix Klein Felix Christian Klein (; ; 25 April 1849 â€“ 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
(1872) "Vergleichende Betrachtungen über neuere geometrische Forschungen" ('A comparative review of recent researches in geometry'), Mathematische Annalen, 43 (1893) pp. 63–100 (Also: Gesammelte Abh. Vol. 1, Springer, 1921, pp. 460–497). :An English translation by Mellen Haskell appeared in ''Bull. N. Y. Math. Soc'' 2 (1892–1893): 215–249. :The original German text of the Erlangen program can be viewed at the University of Michigan online collection a

and also a

in HTML format. :A central information page on the Erlangen program maintained by
John Baez John Carlos Baez ( ; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, ap ...
is a

*
Felix Klein Felix Christian Klein (; ; 25 April 1849 â€“ 22 June 1925) was a German mathematician and Mathematics education, mathematics educator, known for his work in group theory, complex analysis, non-Euclidean geometry, and the associations betwe ...
(2004) ''Elementary Mathematics from an Advanced Standpoint: Geometry'', Dover, New York, :(translation of ''Elementarmathematik vom höheren Standpunkte aus'', Teil II: Geometrie, pub. 1924 by Springer). Has a section on the Erlangen program. {{DEFAULTSORT:Erlangen program Classical geometry Symmetry Group theory Homogeneous spaces Erlangen