HOME

TheInfoList



OR:

An ephemeral acid saline lake is a lake that is relatively high in dissolved salts and has a low pH, usually within the range of <1 - 5 and does not have standing water year round. These types of lakes are identified by high concentrations of evaporite minerals, notably
halite Halite (), commonly known as rock salt, is a type of salt, the mineral (natural) form of sodium chloride ( Na Cl). Halite forms isometric crystals. The mineral is typically colorless or white, but may also be light blue, dark blue, purple, p ...
,
gypsum Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula . It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard or sidewalk chalk, and drywal ...
, and various iron oxides allowing the lakes to become hypersaline. Low pH and evaporite minerals are positively correlated, allowing lakes with lower pH's to have visible evaporite mineral "crusts". Due to the highly unusual geochemistries present in these lake systems, they are considered an extreme environment in nature. Due to the low acidity and high salinity, as well as the periodic total evaporation of the lakes, the waters are generally uninhabitable to life larger than microbes. The microscopic organisms that do live there possess a startling array of biodiversity, spanning from halophilic bacteria and archaea to acidophilic fungi. Because of the unusual ability for life to survive in such a harsh environment, acid saline lakes have recently been studied for their relevance to the field of astrobiology. Acid saline lake systems are considered a rarity within the natural world, and the highest concentration of acid saline lakes occur in
Western Australia Western Australia (commonly abbreviated as WA) is a state of Australia occupying the western percent of the land area of Australia excluding external territories. It is bounded by the Indian Ocean to the north and west, the Southern Ocean to th ...
. They form most favorably under semi-arid to arid conditions and have been closely connected to stable interior
craton A craton (, , or ; from grc-gre, κράτος "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging an ...
s and closed paleodrainage basins, allowing
groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated ...
s to evaporate to the extreme salinity and acidity values present today. Unlike most natural acid saline systems, these lakes are unusual in that they are neither volcanically or
hydrothermal Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, ''water'',Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with th ...
ly fed and are not in direct contact with large
sulfide deposit A sulfide deposit is an ore body or rock containing a great deal of sulfide minerals. Articles on this topic include: * Seafloor massive sulfide deposits * Sedimentary exhalative deposits *Volcanogenic massive sulfide ore deposit Volcanogenic ...
s yet have brines with pH that can reach <1.


Geology and geochemistry

The extreme acidity and salinity of these lakes are largely influenced by geological, climatic, and geographical conditions that have developed over the past 2 million years. Geographically, the lakes are located on Archean basement rock within the stable interior craton known as the
Yilgarn Craton The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have b ...
. These ancient rocks were formed by closed basins via fault block valleys and have been incised by paleodrainage in the
Eocene The Eocene ( ) Epoch is a geological epoch that lasted from about 56 to 33.9 million years ago (mya). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name ''Eocene'' comes from the Ancient Greek (''ēṓs'', " ...
epoch. The most common rock are
granite Granite () is a coarse-grained ( phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies under ...
s and
gneiss Gneiss ( ) is a common and widely distributed type of metamorphic rock. It is formed by high-temperature and high-pressure metamorphic processes acting on formations composed of igneous or sedimentary rocks. Gneiss forms at higher temperatures a ...
es, with
anorthosite Anorthosite () is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most ...
s and
quartzite Quartzite is a hard, non- foliated metamorphic rock which was originally pure quartz sandstone.Essentials of Geology, 3rd Edition, Stephen Marshak, p 182 Sandstone is converted into quartzite through heating and pressure usually related to tec ...
s being somewhat less common. The Archean complexes are highly weathered and deformed, and are economic sources of
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
, along with other minor metals. As the craton is tectonically inactive and hasn’t dropped below sea level since the
Mesozoic The Mesozoic Era ( ), also called the Age of Reptiles, the Age of Conifers, and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretace ...
, it has resulted in sparse zones of
sedimentary rock Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
layers such as lignite, siltstones,
sandstone Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicates ...
s, and marine
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
s. These deposits are primarily thought to have been deposited during the last two marine transgressions of the
Tertiary Tertiary ( ) is a widely used but obsolete term for the geologic period from 66 million to 2.6 million years ago. The period began with the demise of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start ...
, which allowed some of the incised valleys to be filled with seawater and other marine sediments. Paleodrainage from rivers ended in the lake Eocene and the Darling Range uplift successfully dammed river flow and created isolated lake basins. Because of the varied terrain, lakes can be hosted directly on basement Archean rocks while others reside on weathered regolith, Tertiary
sandstones Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks. Most sandstone is composed of quartz or feldspar (both silicates) b ...
and
limestones Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms when t ...
. As such, the varying geochemistry’s of the lakes are in part attributed to the different water rock interactions due to varying host rock. In addition to geologic setting, the climate of Western Australia plays a major role in how the lakes evolve seasonally. The lakes exist in a semi-arid landscape and are directly impacted by seasonal weather variations of South Western Australia. The dry season falls primarily during the winter months (June – August) and the wet season is during the summer months (December – March). Despite being semi-arid, the landscape usually experiences all four seasons with precipitation differences in each. During the wetter months the lakes will be at flooding stage, decreasing the acidity (median = 3.3). Conversely, during the dry months as evapoconcentration dominates and the lakes experience an increase in acidity (median = 4.4) and salinity. Meteoric precipitation also impacts precipitates, as halite and gypsum can be shown to dissolve after rainstorms. Rainfall also washes in organic matter from local flora and fauna into the lakes, increasing the total dissolved solid content. Geochemically, the average pH range of the lakes are from >1 to 5 and the average salinity is >25%, nearly 8 times that of seawater. Most of the Western Australian waters are sodium chloride (NaCl) brines with varying, but regionally excessive, amounts of calcium, potassium, aluminium, iron, bromine and silicon (Ca, K, Al, Fe, Br, and Si). Most of the ions within the waters are Na and Cl (~88%) but can vary from 60% - 98% in some lakes. The most acidic of the lakes (ex. Wave Rock Lake, pH 1.7) has the lowest Na and Cl ions, with much higher concentration of other common ions. Many elemental components within the lake systems are made up of ions that are usually only found in trace amounts in other natural lakes. The more acidic the waters are, the more recorded Fe, Al, and Si elemental compounds. Conversely, waters with pH’s higher than 4 are nearly void of HCO3. The amount of Fe in the waters has a positive correlation with salinity, with the higher the salinity of the water the higher Fe value is present. However, this same correlation is not seen with Al and Si ions. Even more different than usual brines, in acid saline systems the amount of Al is magnitudes higher than that of Ca. Some of the most concentrated Al is at 8000mg/L, which is much higher than that of acid mine waters or seawaters. Other trace ions are present in these lakes in large amounts as well. On average, strontium (Sr) values can get up to 65mg/L and increase with salinity. 59% of the sampled waters have detectable amounts of Mn (>46 mg/L) and Cu (<9.5 mg/L). Less common trace ions include
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
, nickel, molybdenum and
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
(Zn, Ni, Mo, and Co) in detectable amounts, and show a positive correlation with increasing acidity and salinity. Other metal ions exist to a lesser extent but are not as high in values. Metals such as
cerium Cerium is a chemical element with the symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the +3 ...
,
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
,
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient t ...
and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
(Ce, Pb, Sb, and Te) have been identified. In some lakes antimony concentration values exceed that of 3 mg/L, nearly 500 times that of the EPA toxicity limit. High elevations of metallic ions and other trace elements are in most acidic of solutions represent the influence water-rock interactions play in the formation of these brines. Lakes that are close to
nickel sulfide Nickel sulfide is any inorganic compound with the formula NiSx. They range in color from bronze (Ni3S2) to black (NiS2). The nickel sulfide with simplest stoichiometry is NiS, also known as the mineral millerite. From the economic perspective, ...
deposits and undergo oxidation are thought to contribute to local acidity. Lakes that are much farther away with slow groundwater flow are thought to be influenced predominately by the oxidation of the organic and sulfide materials hosted in the Archean basement rocks and coal deposits. During rain events when the acidity is lessened, the lakes quickly readjust to more acidic conditions. This is in part influenced by constant iron cycling and
redox reaction Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
s that generate H+ ions. Al-phyllosilicates (ex. kaolinite and Fe-muscovite) are the main authigenic
phyllosilicate Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually consid ...
s in the lakes. They most likely form from direct precipitation from the acid lake waters, direct precipitation from shallow groundwaters to make cements, and alteration of
feldspar Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagioclase'' (sodium-calcium) felds ...
s and amphiboles. They are closely associated with other minerals within the lakes, such as gypsum, halite, hematite,
jarosite Jarosite is a basic hydrous sulfate of potassium and ferric iron (Fe-III) with a chemical formula of KFe3(SO4)2(OH)6. This sulfate mineral is formed in ore deposits by the oxidation of iron sulfides. Jarosite is often produced as a byproduct du ...
, and alunite. The stability of the minerals are predominately controlled by pH and cation availability, and where kaolinite is typically most stable at neutral pH's in others waters, the positive function of Al and Si ions to increasing acidity allow kaolinite to precipitate at pH extremes.


Relevance to Mars

Other crucial mineral formations that form within these lakes include Al and Fe/Mg phyllosilicates. These clays play an interesting role in the lakes geochemistries and have been studied to better understand how acid saline lakes could be a useful planetary analogue for
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
. While acid saline systems such as those in Western Australia are unusual on Earth, there have been similar sedimentary records found within the
Mawrth Vallis Mawrth Vallis () (Mawrth means "Mars" in Welsh) is a valley on Mars, located in the Oxia Palus quadrangle at 22.3°N, 343.5°E with an elevation approximately two kilometers below datum. Situated between the southern highlands and northern lowlan ...
and
Nili Fossae Nili Fossae is a group of large, concentric grabens on Mars, in the Syrtis Major quadrangle. They have been eroded and partly filled in by sediments and clay-rich ejecta from a nearby giant impact crater, the Isidis basin. It is at approximat ...
regions of Mars. Additionally, clay minerals have been detected in these regions on Mars, which would indicate that large reservoirs of water had to exist for their formation. The existence of jarosite, alunite, acid-tolerant kaolin groups, and chlorides on Mars indicate that these areas could share some characteristics of the Western Australian lakes. In the search for
life on Mars The possibility of life on Mars is a subject of interest in astrobiology due to the planet's proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ...
, clays can play a crucial role in trapping and preserving organic materials. While organics are not well preserved within the clays of the lake system, they do record D values for formational waters that can shed light on potential habitable conditions. Other minerals in the lake have a higher affinity for preservation. Particularly evaporite materials, where rapid precipitation can trap and preserve organics within the crystal structure. Research done by Melanie R. Mormile et al. in 2003 show that microbes could be trapped as fluid inclusions within precipitating minerals such as gypsum and halite. Those microbes could be detected under Raman spectroscopy and X-ray diffraction analysis.


References

{{Reflist Saline lakes