HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
,
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, and
electronic engineering Electronics engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current ...
, an electron hole (often simply called a hole) is a
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exam ...
which is the lack of an electron at a position where one could exist in an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
or atomic lattice. Since in a normal atom or crystal lattice the negative charge of the electrons is balanced by the positive charge of the
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, the absence of an electron leaves a net positive charge at the hole's location. Holes in a metal or
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
crystal lattice In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
can move through the lattice as electrons can, and act similarly to positively-charged particles. They play an important role in the operation of
semiconductor device A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity li ...
s such as
transistor upright=1.4, gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink). A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch e ...
s,
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
s and
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s. If an electron is excited into a higher state it leaves a hole in its old state. This meaning is used in
Auger electron spectroscopy file:HD.6C.037 (11856519893).jpg, A Hanford Site, Hanford scientist uses an Auger electron spectrometer to determine the elemental composition of surfaces. Auger electron spectroscopy (AES; pronounced in French) is a common analytical technique us ...
(and other
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
techniques), in
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of m ...
, and to explain the low electron-electron scattering-rate in crystals (
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s, semiconductors). Although they act like elementary particles, holes are not actually
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from su ...
, but rather
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exam ...
s; they are different from the
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
, which is the
antiparticle In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antie ...
of the electron.
Solids Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural ri ...
are made of only three kinds of
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from su ...
:
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
,
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, and
neutrons The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
, a
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exam ...
is none of these. (See also
Dirac sea The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with negative energy. It was first postulated by the British physicist Paul Dirac in 1930 to explain the anomalous negative-energy quantum states predicted by the ...
.) In
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s,
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
calculations lead to an effective mass for the electrons that is typically negative at the top of a band. The
negative mass In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the ...
is an unintuitive concept, and in these situations, a more familiar picture is found by considering a positive charge with a positive mass.


Solid-state physics

In
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
, an electron hole (usually referred to simply as a hole) is the absence of an electron from a full
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
. A hole is essentially a way to conceptualize the interactions of the electrons within a nearly ''full'' valence band of a crystal lattice, which is ''missing'' a small fraction of its electrons. In some ways, the behavior of a hole within a semiconductor
crystal lattice In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by : \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
is comparable to that of the bubble in a full bottle of water.


Simplified analogy: Empty seat in an auditorium

Hole conduction in a
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
can be explained by the following analogy: Imagine a row of people seated in an auditorium, where there are no spare chairs. Someone in the middle of the row wants to leave, so he jumps over the back of the seat into another row, and walks out. The empty row is analogous to the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
, and the person walking out is analogous to a conduction electron. Now imagine someone else comes along and wants to sit down. The empty row has a poor view; so he does not want to sit there. Instead, a person in the crowded row moves into the empty seat the first person left behind. The empty seat moves one spot closer to the edge and the person waiting to sit down. The next person follows, and the next, et cetera. One could say that the empty seat moves towards the edge of the row. Once the empty seat reaches the edge, the new person can sit down. In the process everyone in the row has moved along. If those people were negatively charged (like electrons), this movement would constitute
conduction Conductor or conduction may refer to: Music * Conductor (music), a person who leads a musical ensemble, such as an orchestra. * Conductor (album), ''Conductor'' (album), an album by indie rock band The Comas * Conduction, a type of structured f ...
. If the seats themselves were positively charged, then only the vacant seat would be positive. This is a very simple model of how hole conduction works. Instead of analyzing the movement of an empty state in the valence band as the movement of many separate electrons, a single equivalent imaginary particle called a "hole" is considered. In an applied
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
, the electrons move in one direction, corresponding to the hole moving in the other. If a hole associates itself with a neutral atom, that atom loses an electron and becomes positive. Therefore, the hole is taken to have positive
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
of +e, precisely the opposite of the electron charge. In reality, due to the
uncertainty principle In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physic ...
of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, combined with the energy levels available in the crystal, the hole is not localizable to a single position as described in the previous example. Rather, the positive charge which represents the hole spans an area in the crystal lattice covering many hundreds of unit cells. This is equivalent to being unable to tell which broken bond corresponds to the "missing" electron. Conduction band electrons are similarly delocalized.


Detailed picture: A hole is the absence of a negative-mass electron

The analogy above is quite simplified, and cannot explain why holes create an opposite effect to electrons in the
Hall effect The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was disco ...
and
Seebeck effect The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
. A more precise and detailed explanation follows.Kittel, ''
Introduction to Solid State Physics ''Introduction to Solid State Physics'', known colloquially as ''Kittel'', is a classic condensed matter physics textbook written by American physicist Charles Kittel in 1953. The book has been highly influential and has seen widespread adoption ...
'', 8th edition, pp. 194–196.
* ''The
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the d ...
determines how electrons respond to forces (via the concept of effective mass).'' A dispersion relation is the relationship between
wavevector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), ...
(k-vector) and energy in a band, part of the
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
. In quantum mechanics, the electrons are waves, and energy is the wave frequency. A localized electron is a
wavepacket In physics, a wave packet (or wave train) is a short "burst" or "envelope" of localized wave action that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an infinite set of component sinusoidal waves of diffe ...
, and the motion of an electron is given by the formula for the group velocity of a wave. An electric field affects an electron by gradually shifting all the wavevectors in the wavepacket, and the electron accelerates when its wave group velocity changes. Therefore, again, the way an electron responds to forces is entirely determined by its dispersion relation. An electron floating in space has the dispersion relation ''E''=ℏ2''k''2/(2''m''), where ''m'' is the (real)
electron mass The electron mass (symbol: ''m''e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics. It has a value of about or about , which has an energy-equivalent of a ...
and ℏ is
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
. Near the bottom of the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
of a semiconductor, the dispersion relation is instead ''E''=ℏ2''k''2/(2''m''*) (''m''* is the '' effective mass''), so a conduction-band electron responds to forces ''as if'' it had the mass ''m''*. * ''Electrons near the top of the
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
behave as if they have
negative mass In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the ...
.'' The dispersion relation near the top of the valence band is ''E''=ℏ2k2/(2''m''*) with ''negative'' effective mass. So electrons near the top of the valence band behave like they have
negative mass In theoretical physics, negative mass is a type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and show some strange properties such as the ...
. When a force pulls the electrons to the right, these electrons actually move left. This is solely due to the shape of the valence band and is unrelated to whether the band is full or empty. If you could somehow empty out the valence band and just put one electron near the valence band maximum (an unstable situation), this electron would move the "wrong way" in response to forces. * ''Positively-charged holes as a shortcut for calculating the total current of an almost-full band.'' A perfectly full band always has zero current. One way to think about this fact is that the electron states near the top of the band have negative effective mass, and those near the bottom of the band have positive effective mass, so the net motion is exactly zero. If an otherwise-almost-full valence band has a state ''without'' an electron in it, we say that this state is occupied by a hole. There is a mathematical shortcut for calculating the current due to every electron in the whole valence band: Start with zero current (the total if the band were full), and ''subtract'' the current due to the electrons that ''would'' be in each hole state if it wasn't a hole. Since ''subtracting'' the current caused by a ''negative'' charge in motion is the same as ''adding'' the current caused by a ''positive'' charge moving on the same path, the mathematical shortcut is to pretend that each hole state is carrying a positive charge, while ignoring every other electron state in the valence band. * ''A hole near the top of the valence band moves the same way as an electron near the top of the valence band would move'' (which is in the opposite direction compared to conduction-band electrons experiencing the same force.) This fact follows from the discussion and definition above. This is an example where the auditorium analogy above is misleading. When a person moves left in a full auditorium, an empty seat moves right. But in this section we are imagining how electrons move through k-space, not real space, and the effect of a force is to move all the electrons through k-space in the same direction at the same time. In this context, a better analogy is a bubble underwater in a river: The bubble moves the same direction as the water, not the opposite. Since force = mass × acceleration, a negative-effective-mass electron near the top of the valence band would move the opposite direction as a positive-effective-mass electron near the bottom of the conduction band, in response to a given electric or magnetic force. Therefore, a hole moves this way as well. * ''Conclusion: Hole is a positive-charge, positive-mass
quasiparticle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exam ...
''. From the above, a hole (1) carries a positive charge, and (2) responds to electric and magnetic fields as if it had a positive charge and positive mass. (The latter is because a particle with positive charge and positive mass respond to electric and magnetic fields in the same way as a particle with a negative charge and negative mass.) That explains why holes can be treated in all situations as ordinary positively charged
quasiparticles In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exam ...
.


Role in semiconductor technology

In some semiconductors, such as silicon, the hole's effective mass is dependent on a direction (
anisotropic Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
), however a value averaged over all directions can be used for some macroscopic calculations. In most semiconductors, the effective mass of a hole is much larger than that of an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
. This results in lower
mobility Mobility may refer to: Social sciences and humanities * Economic mobility, ability of individuals or families to improve their economic status * Geographic mobility, the measure of how populations and goods move over time * Mobilities, a contemp ...
for holes under the influence of an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
and this may slow down the speed of the electronic device made of that semiconductor. This is one major reason for adopting electrons as the primary charge carriers, whenever possible in semiconductor devices, rather than holes. This is also why
NMOS logic N-type metal-oxide-semiconductor logic uses n-type (-) MOSFETs (metal-oxide-semiconductor field-effect transistors) to implement logic gates and other digital circuits. These nMOS transistors operate by creating an inversion layer in a p-type ...
is faster than
PMOS logic PMOS or pMOS logic (from p-channel metal–oxide–semiconductor) is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS log ...
.
OLED An organic light-emitting diode (OLED or organic LED), also known as organic electroluminescent (organic EL) diode, is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light i ...
screens have been modified to reduce imbalance resulting in non radiative recombination by adding extra layers and/or decreasing electron density on one plastic layer so electrons and holes precisely balance within the emission zone. However, in many semiconductor devices, both electrons ''and'' holes play an essential role. Examples include
p–n diode This article provides a more detailed explanation of p–n diode behavior than is found in the articles p–n junction or diode. A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only on ...
s,
bipolar transistors A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar t ...
, and
CMOS logic Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
.


Holes in quantum chemistry

An alternate meaning for the term electron hole is used in
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of m ...
. In
coupled cluster Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in ...
methods, the ground (or lowest energy) state of a molecule is interpreted as the "vacuum state"—conceptually, in this state, there are no electrons. In this scheme, the absence of an electron from a normally filled state is called a "hole" and is treated as a particle, and the presence of an electron in a normally empty state is simply called an "electron". This terminology is almost identical to that used in solid-state physics.


See also

*
Band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
*
Carrier generation and recombination In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are ...
* Effective mass *
Electrical resistivity and conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
* Hole formalism


References

{{Authority control Electronics concepts Quasiparticles Quantum chemistry Charge carriers Holes