HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
and
mathematical physics Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
, an Einstein manifold is a Riemannian or
pseudo-Riemannian In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which t ...
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
whose
Ricci tensor In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
is proportional to the
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
. They are named after
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
because this condition is equivalent to saying that the metric is a solution of the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
Einstein field equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
(with
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
), although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to
Lorentzian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the r ...
s (including the four-dimensional
Lorentzian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the r ...
s usually studied in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
). Einstein manifolds in four Euclidean dimensions are studied as
gravitational instanton In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity o ...
s. If ''M'' is the underlying ''n''-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, and ''g'' is its
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
, the Einstein condition means that :\mathrm = kg for some constant ''k'', where Ric denotes the
Ricci tensor In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
of ''g''. Einstein manifolds with are called
Ricci-flat manifold In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are ...
s.


The Einstein condition and Einstein's equation

In local coordinates the condition that be an Einstein manifold is simply :R_ = kg_ . Taking the trace of both sides reveals that the constant of proportionality ''k'' for Einstein manifolds is related to the
scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
''R'' by :R = nk , where ''n'' is the dimension of ''M''. In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
,
Einstein's equation In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it ...
with a
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field equ ...
Λ is :R_ - \fracg_R + g_\Lambda = \kappa T_, where is the
Einstein gravitational constant In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
. should not be confused with ''k''. The
stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
''T''''ab'' gives the matter and energy content of the underlying spacetime. In
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
(a region of spacetime devoid of matter) , and Einstein's equation can be rewritten in the form (assuming that ): :R_ = \frac\,g_ . Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with ''k'' proportional to the cosmological constant.


Examples

Simple examples of Einstein manifolds include: *Any manifold with
constant sectional curvature In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvatur ...
is an Einstein manifold—in particular: **
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, which is flat, is a simple example of Ricci-flat, hence Einstein metric. ** The ''n''-sphere, S^n, with the round metric is Einstein with k=n-1. **
Hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. Th ...
with the canonical metric is Einstein with k = -(n - 1). *
Complex projective space In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
, \mathbf^n, with the
Fubini–Study metric In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CP''n'' endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Edua ...
, have k = n + 1. *
Calabi–Yau manifold In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring ...
s admit an Einstein metric that is also Kähler, with Einstein constant k=0. Such metrics are not unique, but rather come in families; there is a Calabi–Yau metric in every Kähler class, and the metric also depends on the choice of complex structure. For example, there is a 60-parameter family of such metrics on K3, 57 parameters of which give rise to Einstein metrics which are not related by isometries or rescalings. *
Kähler–Einstein metric In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The ...
s exist on a variety of compact
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
s due to the existence results of
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathem ...
, and the later study of
K-stability In mathematics, and especially differential geometry, differential and algebraic geometry, K-stability is an Algebraic Geometry, algebro-geometric stability condition, for complex manifolds and complex algebraic variety, complex algebraic varieties. ...
especially in the case of Fano manifolds. A necessary condition for closed, oriented,
4-manifold In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. T ...
s to be Einstein is satisfying the
Hitchin–Thorpe inequality In differential geometry the Hitchin–Thorpe inequality is a relation which restricts the topology of 4-manifolds that carry an Einstein metric. Statement of the Hitchin–Thorpe inequality Let ''M'' be a closed, oriented, four-dimensio ...
.


Applications

Four dimensional Riemannian Einstein manifolds are also important in mathematical physics as gravitational instantons in quantum theories of gravity. The term "gravitational instanton" is usually used restricted to Einstein 4-manifolds whose
Weyl tensor In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal f ...
is self-dual, and it is usually assumed that the metric is asymptotic to the standard metric of Euclidean 4-space (and are therefore
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
but non-compact). In differential geometry, self-dual Einstein 4-manifolds are also known as (4-dimensional)
hyperkähler manifold In differential geometry, a hyperkähler manifold is a Riemannian manifold (M, g) endowed with three integrable almost complex structures I, J, K that are Kähler with respect to the Riemannian metric g and satisfy the quaternionic relations I^2 ...
s in the Ricci-flat case, and quaternion Kähler manifolds otherwise. Higher-dimensional Lorentzian Einstein manifolds are used in modern theories of gravity, such as
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
,
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's ...
and
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
. Hyperkähler and quaternion Kähler manifolds (which are special kinds of Einstein manifolds) also have applications in physics as target spaces for nonlinear σ-models with
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
. Compact Einstein manifolds have been much studied in differential geometry, and many examples are known, although constructing them is often challenging. Compact Ricci-flat manifolds are particularly difficult to find: in the monograph on the subject by the pseudonymous author Arthur Besse, readers are offered a meal in a starred restaurant in exchange for a new example.


See also

* Einstein–Hermitian vector bundle


Notes and references

*{{cite book , first = Arthur L. , last = Besse , authorlink = Arthur Besse , title = Einstein Manifolds , series = Classics in Mathematics , publisher = Springer , location = Berlin , year = 1987 , isbn = 3-540-74120-8 Riemannian manifolds
Manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
Mathematical physics