Earth is the third
planet
A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
from the
Sun and the only
astronomical object
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
known to harbor
life
Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
. While large
volumes of water can be found throughout the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, only
Earth sustains liquid surface water. About 71% of Earth's surface is made up of the
ocean
The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
, dwarfing Earth's polar ice, lakes, and rivers. The remaining 29% of Earth's surface is
land, consisting of continents and islands. Earth's surface layer is formed of several slowly moving
tectonic plates
Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large te ...
, which interact to produce mountain ranges,
volcanoes
A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
On Earth, volcanoes are most often found where tectonic plates are ...
, and earthquakes. Earth's liquid
outer core generates the magnetic field that shapes the
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
of the Earth, deflecting destructive
solar winds.
The atmosphere of the Earth consists mostly of
nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
.
Greenhouse gases in the atmosphere like
carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
(CO
2) trap a part of the
energy from the Sun close to the surface.
Water vapor
(99.9839 °C)
, -
, Boiling point
,
, -
, specific gas constant
, 461.5 J/( kg·K)
, -
, Heat of vaporization
, 2.27 MJ/kg
, -
, Heat capacity
, 1.864 kJ/(kg·K)
Water vapor, water vapour or aqueous vapor is the gaseous pha ...
is widely present in the atmosphere and
forms clouds that cover most of the planet. More
solar energy
Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy (including solar water heating), and solar architecture. It is an essenti ...
is received by tropical regions than polar regions and is redistributed by
atmospheric
An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
and
ocean circulation. A region's climate is governed not only by latitude but also by elevation and proximity to moderating oceans. In most areas, severe weather, such as tropical cyclones, thunderstorms, and heatwaves, occurs and greatly impacts life.
Earth is an ellipsoid with
a circumference of about 40,000 km. It is the
densest planet in the Solar System. Of the four
rocky planet
A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate Rock (geology), rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the S ...
s, it is the largest and most massive. Earth is about eight
light minute
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly .
Just as the second forms the basis for ...
s away from the Sun and
orbits it, taking a year (about 365.25 days) to complete one revolution. The
Earth rotates around its own axis in slightly less than a day (in about 23 hours and 56 minutes). The
Earth's axis of rotation is tilted with respect to the perpendicular to its orbital plane around the Sun, producing seasons. Earth is orbited by one
permanent
Permanent may refer to:
Art and entertainment
* ''Permanent'' (film), a 2017 American film
* ''Permanent'' (Joy Division album)
* "Permanent" (song), by David Cook
Other uses
* Permanent (mathematics), a concept in linear algebra
* Permanent (cy ...
natural satellite, the
Moon
The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
, which orbits Earth at 380,000 km (1.3 light seconds) and is roughly a quarter as wide as Earth. Through tidal locking, the Moon always faces the Earth with the same side, which causes
tide
Tides are the rise and fall of sea levels caused by the combined effects of the gravity, gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another.
Tide t ...
s, stabilizes Earth's axis, and
gradually slows its rotation.
Earth, like most other bodies in the Solar System,
formed 4.5 billion years ago from gas in the
early Solar System. During the first
billion years of
Earth's history
The history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by constant geologic ...
, the ocean formed and then
life developed within it. Life spread globally and began to affect Earth's atmosphere and surface, leading to the
Great Oxidation Event two billion years ago.
Humans
Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, ...
emerged 300,000 years ago, and have reached a population of 8 billion today. Humans depend on Earth's
biosphere and natural resources for their survival, but have
increasingly impacted the planet's environment. Today, humanity's impact on Earth's climate, soils, waters, and ecosystems is
unsustainable
Specific definitions of sustainability are difficult to agree on and have varied in the literature and over time. The concept of sustainability can be used to guide decisions at the global, national, and individual levels (e.g. sustainable livin ...
, threatening people's lives and
causing widespread extinctions of other life.
Etymology
The
Modern English word ''Earth'' developed, via
Middle English
Middle English (abbreviated to ME) is a form of the English language that was spoken after the Norman conquest of 1066, until the late 15th century. The English language underwent distinct variations and developments following the Old English p ...
, from an
Old English
Old English (, ), or Anglo-Saxon, is the earliest recorded form of the English language, spoken in England and southern and eastern Scotland in the early Middle Ages. It was brought to Great Britain by Anglo-Saxon settlement of Britain, Anglo ...
noun most often spelled '.
It has cognates in every
Germanic language, and their
ancestral root has been reconstructed as
*''erþō''. In its earliest attestation, the word ''eorðe'' was already being used to translate the many senses of
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
' and
Greek ''gē'': the ground, its
soil
Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former te ...
, dry land, the human world, the surface of the world (including the sea), and the globe itself. As with Roman
Terra/Tellūs and Greek
Gaia
In Greek mythology, Gaia (; from Ancient Greek , a poetical form of , 'land' or 'earth'),, , . also spelled Gaea , is the personification of the Earth and one of the Greek primordial deities. Gaia is the ancestral mother—sometimes parthenog ...
, Earth may have been a
personified goddess in
Germanic paganism: late
Norse mythology
Norse, Nordic, or Scandinavian mythology is the body of myths belonging to the North Germanic peoples, stemming from Old Norse religion and continuing after the Christianization of Scandinavia, and into the Nordic folklore of the modern period ...
included
Jörð ('Earth'), a giantess often given as the mother of
Thor
Thor (; from non, Þórr ) is a prominent god in Germanic paganism. In Norse mythology, he is a hammer-wielding æsir, god associated with lightning, thunder, storms, sacred trees and groves in Germanic paganism and mythology, sacred groves ...
.
Historically, ''earth'' has been written in lowercase. From
early Middle English, its
definite sense as "the globe" was expressed as ''the'' earth. By the era of
Early Modern English,
capitalization of nouns began to prevail, and ''the earth'' was also written ''the Earth'', particularly when referenced along with other heavenly bodies. More recently, the name is sometimes simply given as ''Earth'', by analogy with the names of the
other planets, though ''earth'' and forms with ''the'' remain common.
House styles House style may refer to:
* Standards for writing as specified in the internal style guide of a particular institution, for example, a book publishing company, newspaper, professional organization, or university
* Standards for illustration or graph ...
now vary:
Oxford spelling
Oxford spelling (also ''Oxford English Dictionary'' spelling, Oxford style, or Oxford English spelling) is a spelling standard, named after its use by the University of Oxford, that prescribes the use of British spelling in combination with the ...
recognizes the lowercase form as the most common, with the capitalized form an acceptable variant. Another convention capitalizes "Earth" when appearing as a name (for example, "Earth's atmosphere") but writes it in lowercase when preceded by ''the'' (for example, "the atmosphere of the earth"). It almost always appears in lowercase in colloquial expressions such as "what on earth are you doing?"
Occasionally, the name ''Terra'' is used in scientific writing and especially in science fiction to distinguish humanity's inhabited planet from others, while in poetry ''Tellus'' has been used to denote personification of the Earth. ''Terra'' is also the name of the planet in some
Romance languages
The Romance languages, sometimes referred to as Latin languages or Neo-Latin languages, are the various modern languages that evolved from Vulgar Latin. They are the only extant subgroup of the Italic languages in the Indo-European language fam ...
(languages that evolved from
Latin
Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
) like
Italian and
Portuguese, while in other Romance languages the word gave rise to names with slightly altered spellings (like the
Spanish ''Tierra'' and the
French
French (french: français(e), link=no) may refer to:
* Something of, from, or related to France
** French language, which originated in France, and its various dialects and accents
** French people, a nation and ethnic group identified with Franc ...
''Terre''). The Latinate form ''Gæa'' or ''Gaea'' () of the Greek poetic name ''
Gaia
In Greek mythology, Gaia (; from Ancient Greek , a poetical form of , 'land' or 'earth'),, , . also spelled Gaea , is the personification of the Earth and one of the Greek primordial deities. Gaia is the ancestral mother—sometimes parthenog ...
'' (; or ) is rare, though the alternative spelling ''Gaia'' has become common due to the
Gaia hypothesis
The Gaia hypothesis (), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that help ...
, in which case its pronunciation is rather than the more classical English .
There are a number of adjectives for the planet Earth. From ''Earth'' itself comes ''earthly''. From the Latin ''Terra'' comes ''terran'' , terrestrial , and (via French) ''terrene'' , and from the Latin ''Tellus'' comes ''tellurian'' and ''telluric''.
Chronology
Formation
The oldest material found in the Solar System is dated to
Ga (billion years) ago.
By the primordial Earth had formed.
The bodies in
the Solar System formed and evolved with the Sun. In theory, a
solar nebula
The formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a ...
partitions a volume out of a
molecular cloud by gravitational collapse, which begins to spin and flatten into a
circumstellar disk
A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the rese ...
, and then the planets grow out of that disk with the Sun. A nebula contains gas, ice grains, and
dust
Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in homes ...
(including
primordial nuclide
In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s). According to
nebular theory
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting t ...
,
planetesimal
Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
s formed by
accretion
Accretion may refer to:
Science
* Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity
* Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
, with the primordial Earth being estimated as likely taking anywhere from 70 to 100 million years to form.
Estimates of the age of the Moon range from 4.5 Ga to significantly younger. A
leading hypothesis is that it was formed by accretion from material loosed from Earth after a
Mars
Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
-sized object with about 10% of Earth's mass, named
Theia, collided with Earth.
It hit Earth with a glancing blow and some of its mass merged with Earth.
Between approximately 4.1 and , numerous
asteroid impacts during the
Late Heavy Bombardment caused significant changes to the greater surface environment of the Moon and, by inference, to that of Earth.
After formation
Earth's atmosphere
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
and
ocean
The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
s were formed by
volcanic activity and
outgassing. Water vapor from these sources
condensed into the oceans, augmented by water and ice from asteroids,
protoplanets, and
comet
A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
s.
Sufficient water to fill the oceans may have been on Earth since it formed. In this model, atmospheric
greenhouse gas
A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
es kept the oceans from freezing when the newly forming Sun
had only 70% of its
current luminosity.
By ,
Earth's magnetic field
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic f ...
was established, which helped prevent the atmosphere from being stripped away by the
solar wind.
As the molten outer layer of Earth cooled it
formed the first solid
crust, which is thought to have been
mafic
A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include ...
in composition. The first
continental crust, which was more
felsic
In geology, felsic is a modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz.Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. It is contrasted with mafic rocks, whi ...
in composition, formed by the partial melting of this mafic crust. The presence of grains of the
mineral zircon of Hadean age in
Eoarchean
The Eoarchean (; also spelled Eoarchaean) is the first era of the Archean Eon of the geologic record. It spans 400 million years, from the end of the Hadean Eon 4 billion years ago (4000 Mya) to the start of the Paleoarchean Era 3600 Mya. The ...
sedimentary rock
Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
s suggests that at least some felsic crust existed as early as , only after Earth's formation.
There are two main models of how this initial small volume of continental crust evolved to reach its current abundance:
(1) a relatively steady growth up to the present day,
which is supported by the radiometric dating of continental crust globally and (2) an initial rapid growth in the volume of continental crust during the
Archean
The Archean Eon ( , also spelled Archaean or Archæan) is the second of four geologic eons of Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozoic.
The Earth
Earth ...
, forming the bulk of the continental crust that now exists,
which is supported by isotopic evidence from
hafnium
Hafnium is a chemical element with the symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri M ...
in
zircon
Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of the r ...
s and
neodymium
Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes i ...
in sedimentary rocks. The two models and the data that support them can be reconciled by large-scale
recycling of the continental crust, particularly during the early stages of Earth's history.
New continental crust forms as a result of
plate tectonics
Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large ...
, a process ultimately driven by the continuous loss of heat from Earth's interior. Over
the period of hundreds of millions of years, tectonic forces have caused areas of continental crust to group together to form
supercontinents that have subsequently broken apart. At approximately , one of the earliest known supercontinents,
Rodinia
Rodinia (from the Russian родина, ''rodina'', meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago.
were probably ...
, began to break apart. The continents later recombined to form
Pannotia
Pannotia (from Greek: '' pan-'', "all", '' -nótos'', "south"; meaning "all southern land"), also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent ...
at , then finally
Pangaea, which also began to break apart at .
The most recent pattern of
ice age
An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and gree ...
s began about , and then intensified during the
Pleistocene
The Pleistocene ( , often referred to as the ''Ice age'') is the geological Epoch (geology), epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was fina ...
about .
High- and
middle-latitude regions have since undergone repeated cycles of glaciation and thaw, repeating about every 21,000, 41,000 and 100,000 years.
The
Last Glacial Period, colloquially called the "last ice age", covered large parts of the continents, to the middle latitudes, in ice and ended about 11,700 years ago.
Origin of life and evolution
Chemical reaction
A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s led to the first self-replicating molecules about four billion years ago. A half billion years later, the
last common ancestor of all current life arose.
The evolution of
photosynthesis
Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
allowed the Sun's energy to be harvested directly by life forms. The resultant
molecular oxygen
There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are:
*A ...
() accumulated in the atmosphere and due to interaction with ultraviolet solar radiation, formed a protective
ozone layer
The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in rela ...
() in the upper atmosphere.
The incorporation of smaller cells within larger ones resulted in the
development of complex cells called
eukaryote
Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s.
True multicellular organisms formed as cells within
colonies
In modern parlance, a colony is a territory subject to a form of foreign rule. Though dominated by the foreign colonizers, colonies remain separate from the administration of the original country of the colonizers, the '' metropolitan state'' ...
became increasingly specialized. Aided by the absorption of harmful
ultraviolet radiation by the ozone layer, life colonized Earth's surface.
Among the earliest
fossil
A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
evidence for
life
Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
is
microbial mat fossils found in 3.48 billion-year-old
sandstone
Sandstone is a clastic sedimentary rock composed mainly of sand-sized (0.0625 to 2 mm) silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks.
Most sandstone is composed of quartz or feldspar (both silicates) ...
in
Western Australia
Western Australia (commonly abbreviated as WA) is a state of Australia occupying the western percent of the land area of Australia excluding external territories. It is bounded by the Indian Ocean to the north and west, the Southern Ocean to th ...
,
biogenic
A biogenic substance is a product made by or of life forms. While the term originally was specific to metabolite compounds that had toxic effects on other organisms, it has developed to encompass any constituents, secretions, and metabolites of p ...
graphite
Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
found in 3.7 billion-year-old
metasedimentary rocks in
Western Greenland
Kitaa, originally Vestgrønland ("West Greenland"), is a former administrative division of Greenland. It was by far the most populated of the divisions, being home to almost 90% of the total population. The divisions were de facto replaced by st ...
, and remains of
biotic material found in 4.1 billion-year-old rocks in Western Australia. The
earliest direct evidence of life on Earth is contained in 3.45 billion-year-old
Australia
Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
n rocks showing fossils of
microorganism
A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
s.
During the
Neoproterozoic, , much of Earth might have been covered in ice. This hypothesis has been termed "
Snowball Earth
The Snowball Earth hypothesis proposes that, during one or more of Earth's Greenhouse and icehouse Earth, icehouse Climate, climates, the Earth's surface, planet's surface became entirely or nearly entirely Freezing, frozen. It is believed that ...
", and it is of particular interest because it preceded the
Cambrian explosion
The Cambrian explosion, Cambrian radiation, Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately in the Cambrian Period when practically all major animal phyla started appearing in the fossil recor ...
, when multicellular life forms significantly increased in complexity. Following the Cambrian explosion, , there have been at least five major
mass extinctions and many minor ones.
Apart from the proposed current
Holocene extinction
The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of bacteria, fungi, plants, and animals, including mammals, birds, reptiles, amphibians, f ...
event, the
most recent
Most or Möst or ''variation'', may refer to:
Places
* Most, Kardzhali Province, a village in Bulgaria
* Most (city), a city in the Czech Republic
** Most District, a district surrounding the city
** Most Basin, a lowland named after the city
** ...
was , when
an asteroid impact triggered the extinction of the non-avian
dinosaur
Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic period, between 243 and 233.23 million years ago (mya), although the exact origin and timing of the evolution of dinosaurs is t ...
s and other large reptiles, but largely spared small animals such as
insect
Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pairs ...
s,
mammal
Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur or ...
s,
lizard
Lizards are a widespread group of squamate reptiles, with over 7,000 species, ranging across all continents except Antarctica, as well as most oceanic island chains. The group is paraphyletic since it excludes the snakes and Amphisbaenia alt ...
s and
bird
Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweigh ...
s. Mammalian life has diversified over the past , and several million years ago an African
ape
Apes (collectively Hominoidea ) are a clade of Old World simians native to sub-Saharan Africa and Southeast Asia (though they were more widespread in Africa, most of Asia, and as well as Europe in prehistory), which together with its siste ...
gained the ability to stand upright.
This facilitated tool use and encouraged communication that provided the nutrition and stimulation needed for a larger brain, which led to the
evolution of humans. The
development of agriculture, and then
civilization
A civilization (or civilisation) is any complex society characterized by the development of a state, social stratification, urbanization, and symbolic systems of communication beyond natural spoken language (namely, a writing system).
Ci ...
, led to humans having an
influence on Earth and the nature and quantity of other life forms that continues to this day.
Future
Earth's expected long-term future is tied to that of the Sun. Over the next , solar luminosity will increase by 10%, and over the next by 40%.
Earth's increasing surface temperature will accelerate the
inorganic carbon cycle, reducing concentration to levels lethally low for plants ( for
C4 photosynthesis) in approximately .
The lack of vegetation will result in the loss of oxygen in the atmosphere, making animal life impossible.
Due to the increased luminosity, Earth's mean temperature may reach in 1.5 billion years, and all ocean water will evaporate and be lost to space, which may trigger a
runaway greenhouse effect
A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A ...
, within an estimated 1.6 to 3 billion years.
Even if the Sun were stable, a fraction of the water in the modern oceans will descend to the
mantle
A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that.
Mantle may refer to:
*Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear
**Mantle (vesture), an Eastern Orthodox ve ...
, due to reduced steam venting from mid-ocean ridges.
The Sun will
evolve to become a
red giant
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses ()) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around or ...
in about . Models predict that the Sun will expand to roughly , about 250 times its present radius.
Earth's fate is less clear. As a red giant, the Sun will lose roughly 30% of its mass, so, without tidal effects, Earth will move to an orbit from the Sun when the star reaches its maximum radius, otherwise, with tidal effects, it may enter the Sun's atmosphere and be vaporized.
Geophysical characteristics
Size and shape
The shape of Earth is nearly spherical, with an average diameter of , making it the
fifth largest of the Solar System's planetary sized objects and largest among its
terrestrial ones. Due to
Earth's rotation
Earth's rotation or Earth's spin is the rotation of planet Earth around its own Rotation around a fixed axis, axis, as well as changes in the orientation (geometry), orientation of the rotation axis in space. Earth rotates eastward, in retrograd ...
its shape is
bulged around the Equator and slightly flattened at the
poles,
resulting in a larger diameter at the equator than at the poles.
Earth's shape therefore is more accurately described as an
oblate spheroid
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circ ...
.
Earth's shape furthermore has local
topographic
Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps.
Topography is a field of geoscience and planetary scie ...
variations. Though the largest variations, like the
Mariana Trench ( below local sea level), only shortens Earth's average radius by 0.17% and
Mount Everest
Mount Everest (; Tibetan: ''Chomolungma'' ; ) is Earth's highest mountain above sea level, located in the Mahalangur Himal sub-range of the Himalayas. The China–Nepal border runs across its summit point. Its elevation (snow heig ...
( above local sea level) lengthens it by only 0.14%. Earth's surface is farthest out from Earth's
center of mass
In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
at its equatorial bulge, making the summit of the
Chimborazo
Chimborazo () is a currently inactive stratovolcano in the Cordillera Occidental range of the Andes. Its last known eruption is believed to have occurred around 550 A.D.
Chimborazo's summit is the farthest point on the Earth's surface from th ...
volcano in
Ecuador
Ecuador ( ; ; Quechua: ''Ikwayur''; Shuar: ''Ecuador'' or ''Ekuatur''), officially the Republic of Ecuador ( es, República del Ecuador, which literally translates as "Republic of the Equator"; Quechua: ''Ikwadur Ripuwlika''; Shuar: ''Eku ...
() the farthest point.
Parallel to the rigid land topography
the Ocean exhibits a more dynamic topography.
To measure the local variation of Earth's topography,
geodesy
Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), orientation in space, and gravity. The field also incorporates studies of how these properties change over time and equivale ...
employs an idealized Earth producing a shape called a
geoid. Such a geoid shape is gained if the ocean is idealized, covering Earth completely and without any perturbations such as tides and winds. The result is a smooth but gravitational irregular geoid surface, providing a mean
sea level
Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardised g ...
(MSL) as a reference level for topographic measurements.
Surface
The total
surface area
The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
of Earth is about .
Earth's surface can be divided into two
hemisphere
Hemisphere refers to:
* A half of a sphere
As half of the Earth
* A hemisphere of Earth
** Northern Hemisphere
** Southern Hemisphere
** Eastern Hemisphere
** Western Hemisphere
** Land and water hemispheres
* A half of the (geocentric) celestia ...
s, such as into the
Northern
Northern may refer to the following:
Geography
* North, a point in direction
* Northern Europe, the northern part or region of Europe
* Northern Highland, a region of Wisconsin, United States
* Northern Province, Sri Lanka
* Northern Range, a ra ...
and
Southern Hemisphere, or the
Western and
Eastern Hemisphere
The Eastern Hemisphere is the half of the planet Earth which is east of the prime meridian (which crosses Greenwich, London, United Kingdom) and west of the antimeridian (which crosses the Pacific Ocean and relatively little land from pole to pol ...
.
Most of the
surface is made of water, in
liquid form or in smaller amounts as
ice
Ice is water frozen into a solid state, typically forming at or below temperatures of 0 degrees Celsius or Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaq ...
. 70.8% () of the Earth's surface consists of the interconnected
ocean
The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
,
making it Earth's global ocean or ''world ocean''.
This makes Earth, along with its vibrant
hydrosphere
The hydrosphere () is the combined mass of water found on, under, and above the surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to change in shape. This ...
a water world
or
ocean world
An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in form of oceans, either beneath the surface, as subsurface oceans, or on the surfa ...
,
particularly in Earth's early history when the ocean is thought to have possibly covered Earth completely.
The world ocean is commonly divided into the
Pacific Ocean
The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean (or, depending on definition, to Antarctica) in the south, and is bounded by the continen ...
,
Atlantic Ocean
The Atlantic Ocean is the second-largest of the world's five oceans, with an area of about . It covers approximately 20% of Earth's surface and about 29% of its water surface area. It is known to separate the " Old World" of Africa, Europe ...
,
Indian Ocean
The Indian Ocean is the third-largest of the world's five oceanic divisions, covering or ~19.8% of the water on Earth's surface. It is bounded by Asia to the north, Africa to the west and Australia to the east. To the south it is bounded by th ...
,
Southern Ocean
The Southern Ocean, also known as the Antarctic Ocean, comprises the southernmost waters of the World Ocean, generally taken to be south of 60° S latitude and encircling Antarctica. With a size of , it is regarded as the second-small ...
and
Arctic Ocean
The Arctic Ocean is the smallest and shallowest of the world's five major oceans. It spans an area of approximately and is known as the coldest of all the oceans. The International Hydrographic Organization (IHO) recognizes it as an ocean, a ...
, from largest to smallest. Below the ocean's surface are the
continental shelf
A continental shelf is a portion of a continent that is submerged under an area of relatively shallow water, known as a shelf sea. Much of these shelves were exposed by drops in sea level during glacial periods. The shelf surrounding an island ...
, mountains, volcanoes,
oceanic trenches,
submarine canyons,
oceanic plateau
An oceanic or submarine plateau is a large, relatively flat elevation that is higher than the surrounding relief with one or more relatively steep sides.
There are 184 oceanic plateaus in the world, covering an area of or about 5.11% of the ...
s, abyssal plains, and a globe-spanning mid-ocean ridge system.
In contrast, Earth's
land makes 29.2%, or of Earth's surface area. Earth's land consists of many
island
An island (or isle) is an isolated piece of habitat that is surrounded by a dramatically different habitat, such as water. Very small islands such as emergent land features on atolls can be called islets, skerries, cays or keys. An island ...
s around the globe, but mainly of four continental
landmass
A landmass, or land mass, is a large region or area of land. The term is often used to refer to lands surrounded by an ocean or sea, such as a continent or a large island. In the field of geology, a landmass is a defined section of continental ...
es, which are from largest to smallest:
Afroeurasia
Afro-Eurasia (also Afroeurasia, Eurafrasia or the Old World) is a landmass comprising the continents of Africa, Asia, and Europe. The terms are compound words of the names of its constituent parts. Its mainland is the largest and most populou ...
,
America
The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territorie ...
,
Antarctica
Antarctica () is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest contine ...
and
Australia
Australia, officially the Commonwealth of Australia, is a Sovereign state, sovereign country comprising the mainland of the Australia (continent), Australian continent, the island of Tasmania, and numerous List of islands of Australia, sma ...
.
These landmasses are further broken down and grouped into the
continent
A continent is any of several large landmasses. Generally identified by convention rather than any strict criteria, up to seven geographical regions are commonly regarded as continents. Ordered from largest in area to smallest, these seven ...
s. The
terrain
Terrain or relief (also topographical relief) involves the vertical and horizontal dimensions of land surface. The term bathymetry is used to describe underwater relief, while hypsometry studies terrain relative to sea level. The Latin word ...
varies greatly and consists of mountains, deserts, plains, plateaus, and other
landform
A landform is a natural or anthropogenic land feature on the solid surface of the Earth or other planetary body. Landforms together make up a given terrain, and their arrangement in the landscape is known as topography. Landforms include hills, ...
s. The elevation of the land surface varies from the low point of at the
Dead Sea
The Dead Sea ( he, יַם הַמֶּלַח, ''Yam hamMelaḥ''; ar, اَلْبَحْرُ الْمَيْتُ, ''Āl-Baḥrū l-Maytū''), also known by other names, is a salt lake bordered by Jordan to the east and Israel and the West Bank ...
, to a maximum altitude of at the top of Mount Everest. The mean height of land above sea level is about .
The
continental crust consists of lower density material such as the igneous rocks
granite
Granite () is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies undergro ...
and
andesite
Andesite () is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predomi ...
. Less common is
basalt
Basalt (; ) is an aphanite, aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the planetary surface, surface of a terrestrial ...
, a denser volcanic rock that is the primary constituent of the
ocean floors.
Sedimentary rock is formed from the accumulation of sediment that becomes buried and
compacted together. Nearly 75% of the continental surfaces are covered by sedimentary rocks, although they form about 5% of the crust.
The third form of rock material found on Earth is
metamorphic rock
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causin ...
, which is created from the transformation of pre-existing rock types through high pressures, high temperatures, or both. The most abundant
silicate minerals on Earth's surface include
quartz
Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical form ...
,
feldspar
Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagioclase'' (sodium-calcium) feldsp ...
s,
amphibole
Amphibole () is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is A ...
,
mica
Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is ...
,
pyroxene
The pyroxenes (commonly abbreviated to ''Px'') are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents calcium (Ca), sodium (Na), iron (Fe II) ...
and
olivine
The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
.
Common
carbonate mineral
Carbonate minerals are those minerals containing the carbonate ion, .
Carbonate divisions Anhydrous carbonates
*Calcite group: trigonal
**Calcite CaCO3
**Gaspéite (Ni,Mg,Fe2+)CO3
**Magnesite MgCO3
**Otavite CdCO3
**Rhodochrosite MnCO3
**Sider ...
s include
calcite
Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
(found in
limestone
Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
) and
dolomite Dolomite may refer to:
*Dolomite (mineral), a carbonate mineral
*Dolomite (rock), also known as dolostone, a sedimentary carbonate rock
*Dolomite, Alabama, United States, an unincorporated community
*Dolomite, California, United States, an unincor ...
.
Erosion and tectonics
The interaction between erosion and tectonics has been a topic of debate since the early 1990s. While the tectonic effects on surface processes such as erosion have long been recognized (for example, river formation as a result of tectonic uplift ...
,
volcanic eruptions,
flooding,
weathering
Weathering is the deterioration of rocks, soils and minerals as well as wood and artificial materials through contact with water, atmospheric gases, and biological organisms. Weathering occurs ''in situ'' (on site, with little or no movement), ...
,
glaciation
A glacial period (alternatively glacial or glaciation) is an interval of time (thousands of years) within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate betw ...
, the growth of
coral reef
A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of colonies of coral polyps held together by calcium carbonate. Most coral reefs are built from stony corals, whose polyps cluster in groups.
Co ...
s, and meteorite impacts are among the processes that constantly reshape Earth's surface over
geological time
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronol ...
.
The
pedosphere is the outermost layer of Earth's continental surface and is composed of soil and subject to
soil formation processes. The total
arable land
Arable land (from the la, arabilis, "able to be ploughed") is any land capable of being ploughed and used to grow crops.''Oxford English Dictionary'', "arable, ''adj''. and ''n.''" Oxford University Press (Oxford), 2013. Alternatively, for the ...
is 10.7% of the land surface, with 1.3% being permanent cropland. Earth has an estimated of cropland and of pastureland.
Tectonic plates
Earth's mechanically rigid outer layer, the lithosphere, is divided into tectonic plates. These plates are rigid segments that move relative to each other at one of three boundaries types: at
convergent boundaries
A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a ...
, two plates come together; at
divergent boundaries, two plates are pulled apart; and at
transform boundaries, two plates slide past one another laterally. Along these plate boundaries,
earthquake
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from ...
s,
volcanic activity,
mountain-building, and
oceanic trench formation can occur.
The tectonic plates ride on top of the asthenosphere, the solid but less-viscous part of the upper mantle that can flow and move along with the plates.
As the tectonic plates migrate,
oceanic crust
Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumu ...
is
subducted
Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the ...
under the leading edges of the plates at convergent boundaries. At the same time, the upwelling of mantle material at divergent boundaries creates mid-ocean ridges. The combination of these processes recycles the oceanic crust back into the mantle. Due to this recycling, most of the ocean floor is less than old. The oldest oceanic crust is located in the Western Pacific and is estimated to be old.
By comparison, the oldest dated
continental crust is ,
although zircons have been found preserved as clasts within Eoarchean sedimentary rocks that give ages up to , indicating that at least some continental crust existed at that time.
The seven major plates are the
Pacific,
North American
North America is a continent in the Northern Hemisphere and almost entirely within the Western Hemisphere. It is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the southeast by South America and the Ca ...
,
Eurasian
Eurasia (, ) is the largest continental area on Earth, comprising all of Europe and Asia. Primarily in the Northern and Eastern Hemispheres, it spans from the British Isles and the Iberian Peninsula in the west to the Japanese archipelago ...
,
African
African or Africans may refer to:
* Anything from or pertaining to the continent of Africa:
** People who are native to Africa, descendants of natives of Africa, or individuals who trace their ancestry to indigenous inhabitants of Africa
*** Ethn ...
,
Antarctic
The Antarctic ( or , American English also or ; commonly ) is a polar region around Earth's South Pole, opposite the Arctic region around the North Pole. The Antarctic comprises the continent of Antarctica, the Kerguelen Plateau and other ...
,
Indo-Australian all of this entry re immigration is a complete fabrication
Indian Australians or Indo-Australians are Australians of Indian ancestry. This includes both those who are Australian by birth, and those born in India or elsewhere in the Indian d ...
, and
South American. Other notable plates include the
Arabian Plate, the
Caribbean Plate
The Caribbean Plate is a mostly oceanic tectonic plate underlying Central America and the Caribbean Sea off the north coast of South America.
Roughly 3.2 million square kilometers (1.2 million square miles) in area, the Caribbean Plate borders ...
, the
Nazca Plate
The Nazca Plate or Nasca Plate, named after the Nazca region of southern Peru, is an oceanic tectonic plate in the eastern Pacific Ocean basin off the west coast of South America. The ongoing subduction, along the Peru–Chile Trench, of the Na ...
off the west coast of South America and the
Scotia Plate in the southern Atlantic Ocean. The Australian Plate fused with the Indian Plate between . The fastest-moving plates are the oceanic plates, with the
Cocos Plate
The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate ...
advancing at a rate of
and the Pacific Plate moving . At the other extreme, the slowest-moving plate is the South American Plate, progressing at a typical rate of .
Internal structure
Earth's interior, like that of the other terrestrial planets, is divided into layers by their
chemical or physical (
rheological) properties. The outer layer is a chemically distinct
silicate
In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
solid crust, which is underlain by a highly
viscous
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inter ...
solid mantle. The crust is separated from the mantle by the
Mohorovičić discontinuity
The Mohorovičić discontinuity ( , ), usually referred to as the Moho discontinuity or the Moho, is the boundary between the Earth's crust and the mantle. It is defined by the distinct change in velocity of seismic waves as they pass through ch ...
.
The thickness of the crust varies from about under the oceans to for the continents. The crust and the cold, rigid, top of the
upper mantle are collectively known as the lithosphere, which is divided into independently moving tectonic plates.
Beneath the lithosphere is the
asthenosphere
The asthenosphere () is the mechanically weak and ductile region of the upper mantle of Earth. It lies below the lithosphere, at a depth between ~ below the surface, and extends as deep as . However, the lower boundary of the asthenosphere is not ...
, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at below the surface, spanning a
transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid
outer core lies above a solid
inner core.
Earth's inner core may be rotating at a slightly higher
angular velocity
In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
than the remainder of the planet, advancing by 0.1–0.5° per year, although both somewhat higher and much lower rates have also been proposed.
The radius of the inner core is about one-fifth of that of Earth.
Density increases with depth, as described in the table on the right.
Among the Solar System's planetary sized objects Earth is the
object with the highest density.
Chemical composition
Earth's mass
An Earth mass (denoted as M_\mathrm or M_\oplus, where ⊕ is the standard astronomical symbol for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is , with a relative uncertainty ...
is approximately (5,970
Yg). It is composed mostly of
iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
(32.1%),
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
(30.1%),
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
(15.1%),
magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
(13.9%),
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
(2.9%),
nickel
Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
(1.8%),
calcium
Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
(1.5%), and
aluminum
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has ...
(1.4%), with the remaining 1.2% consisting of trace amounts of other elements. Due to
mass segregation
In astronomy, dynamical mass segregation is the process by which heavier members of a gravitationally bound system, such as a star cluster, tend to move toward the center, while lighter members tend to move farther away from the center.
Equipar ...
, the core region is estimated to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements.
The most common rock constituents of the crust are nearly all
oxide
An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
s: chlorine, sulfur, and fluorine are the important exceptions to this and their total amount in any rock is usually much less than 1%. Over 99% of the crust is composed of 11 oxides, principally silica, alumina, iron oxides, lime, magnesia,
potash
Potash () includes various mined and manufactured salts that contain potassium in water-soluble form. , and soda.
Heat
The major heat-producing
isotope
Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s within Earth are
potassium-40,
uranium-238
Uranium-238 (238U or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it ...
, and
thorium-232
Thorium-232 () is the main naturally occurring isotope of thorium, with a relative abundance of 99.98%. It has a half life of 14 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228; its decay ...
.
At the center, the temperature may be up to , and the pressure could reach .
Because much of the heat is provided by radioactive decay, scientists postulate that early in Earth's history, before isotopes with short half-lives were depleted, Earth's heat production was much higher. At approximately , twice the present-day heat would have been produced, increasing the rates of
mantle convection
Mantle convection is the very slow creeping motion of Earth's solid silicate mantle as convection currents carrying heat from the interior to the planet's surface.
The Earth's surface lithosphere rides atop the asthenosphere and the two form ...
and plate tectonics, and allowing the production of uncommon
igneous rock
Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main The three types of rocks, rock types, the others being Sedimentary rock, sedimentary and metamorphic rock, metamorphic. Igneous rock ...
s such as
komatiite
Komatiite () is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% MgO. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite wa ...
s that are rarely formed today.
The mean heat loss from Earth is , for a global heat loss of .
A portion of the core's thermal energy is transported toward the crust by
mantle plumes, a form of convection consisting of upwellings of higher-temperature rock. These plumes can produce
hotspots
Hotspot, Hot Spot or Hot spot may refer to:
Places
* Hot Spot, Kentucky, a community in the United States
Arts, entertainment, and media Fictional entities
* Hot Spot (comics), a name for the DC Comics character Isaiah Crockett
* Hot Spot (Tra ...
and
flood basalts.
More of the heat in Earth is lost through plate tectonics, by mantle upwelling associated with
mid-ocean ridge
A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a diverge ...
s. The final major mode of heat loss is through conduction through the lithosphere, the majority of which occurs under the oceans because the crust there is much thinner than that of the continents.
Gravitational field
The
gravity of Earth
The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).
It is a vector quanti ...
is the
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
that is imparted to objects due to the distribution of mass within Earth. Near Earth's surface,
gravitational acceleration
In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodies ...
is approximately . Local differences in topography,
geology
Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ear ...
, and deeper tectonic structure cause local and broad regional differences in Earth's gravitational field, known as
gravity anomalies
The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity meas ...
.
Magnetic field
The main part of Earth's magnetic field is generated in the core, the site of a
dynamo process that converts the kinetic energy of thermally and compositionally driven convection into electrical and magnetic field energy. The field extends outwards from the core, through the mantle, and up to Earth's surface, where it is, approximately, a
dipole. The poles of the dipole are located close to Earth's geographic poles. At the equator of the magnetic field, the magnetic-field strength at the surface is , with a
magnetic dipole moment
In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
of at epoch 2000, decreasing nearly 6% per century (although it still remains stronger than its long time average).
The convection movements in the core are chaotic; the magnetic poles drift and periodically change alignment. This causes
secular variation
The secular variation of a time series is its long-term, non-periodic variation (see decomposition of time series). Whether a variation is perceived as secular or not depends on the available timescale: a variation that is secular over a timescale ...
of the main field and
field reversals at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago.
The extent of Earth's magnetic field in space defines the
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
. Ions and electrons of the solar wind are deflected by the magnetosphere; solar wind pressure compresses the dayside of the magnetosphere, to about 10 Earth radii, and extends the nightside magnetosphere into a long tail. Because the velocity of the solar wind is greater than the speed at which waves propagate through the solar wind, a supersonic
bow shock precedes the dayside magnetosphere within the solar wind.
Charged particles are contained within the magnetosphere; the plasmasphere is defined by low-energy particles that essentially follow magnetic field lines as Earth rotates. The ring current is defined by medium-energy particles that drift relative to the geomagnetic field, but with paths that are still dominated by the magnetic field,
and the
Van Allen radiation belts are formed by high-energy particles whose motion is essentially random, but contained in the magnetosphere.
During
magnetic storms and
substorm
A substorm, sometimes referred to as a magnetospheric substorm or an auroral substorm, is a brief disturbance in the Earth's magnetosphere that causes energy to be released from the "tail" of the magnetosphere and injected into the high latitude ...
s, charged particles can be deflected from the outer magnetosphere and especially the magnetotail, directed along field lines into Earth's ionosphere, where atmospheric atoms can be excited and ionized, causing the
aurora.
Orbit and rotation
Rotation
Earth's rotation period relative to the Sun—its mean solar day—is of mean solar time ().
Because Earth's solar day is now slightly longer than it was during the 19th century due to
tidal deceleration
Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite (e.g. the Moon) and the primary planet that it orbits (e.g. Earth). The acceleration causes a gradual recession of a satellite in a prograde orbit away from ...
, each day varies between longer than the mean solar day.
Earth's rotation period relative to the fixed stars, called its ''stellar day'' by the International Earth Rotation and Reference Systems Service (IERS), is of mean solar time (UT1), or
Earth's rotation period relative to the precession (astronomy), precessing or moving mean March equinox (when the Sun is at 90° on the equator), is of mean solar time (UT1) .
Thus the sidereal day is shorter than the stellar day by about 8.4 ms.
Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or the Moon every two minutes; from Earth's surface, the apparent sizes of the Sun and the Moon are approximately the same.
Orbit
Earth orbits the Sun, making Earth the third-closest planet to the Sun and part of the inner Solar System. Earth's average orbital distance is about , which is the basis for the Astronomical Unit and is equal to roughly 8.3
light minute
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly .
Just as the second forms the basis for ...
s or 380 times Lunar distance (astronomy), Earth's distance to the Moon.
Earth orbits the Sun every 365.2564 mean solar days, or one sidereal year. With an apparent movement of the Sun in Earth's sky at a rate of about 1°/day eastward, which is one apparent Sun or Moon diameter every 12 hours. Due to this motion, on average it takes 24 hours—a Solar time, solar day—for Earth to complete a full rotation about its axis so that the Sun returns to the Meridian (astronomy), meridian.
The orbital speed of Earth averages about , which is fast enough to travel a distance equal to Earth's diameter, about , in seven minutes, and the distance to the Moon, , in about 3.5 hours.
The Moon and Earth orbit a common barycenter every 27.32 days relative to the background stars. When combined with the Earth-Moon system's common orbit around the Sun, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial pole, celestial north pole, the motion of Earth, the Moon, and their axial rotations are all counterclockwise. Viewed from a vantage point above the Sun and Earth's north poles, Earth orbits in a counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth's axial tilt, axis is tilted some 23.44 degrees from the perpendicular to the Earth-Sun plane (the ecliptic), and the Earth-Moon plane is tilted up to ±5.1 degrees against the Earth-Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses.
The Hill sphere, or the sphere of Gravity, gravitational influence, of Earth is about in radius.
This is the maximum distance at which Earth's gravitational influence is stronger than the more distant Sun and planets. Objects must orbit Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun.
Earth, along with the Solar System, is situated in the Milky Way and orbits about 28,000 light-years from its center. It is about 20 light-years above the galactic plane in the Orion Arm.
Axial tilt and seasons
The axial tilt of Earth is approximately 23.439281°
with the axis of its orbit plane, always pointing towards the Celestial Poles. Due to Earth's axial tilt, the amount of sunlight reaching any given point on the surface varies over the course of the year. This causes the seasonal change in climate, with summer in the Northern Hemisphere occurring when the Tropic of Cancer is facing the Sun, and in the
Southern Hemisphere when the Tropic of Capricorn faces the Sun. In each instance, winter occurs simultaneously in the opposite hemisphere. During the summer, the day lasts longer, and the Sun climbs higher in the sky. In winter, the climate becomes cooler and the days shorter. Above the Arctic Circle and below the Antarctic Circle there is no daylight at all for part of the year, causing a polar night, and this night extends for several months at the poles themselves. These same latitudes also experience a midnight sun, where the sun remains visible all day.
By astronomical convention, the four seasons can be determined by the solstices—the points in the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes, when Earth's rotational axis is aligned with its orbital axis. In the Northern Hemisphere, winter solstice currently occurs around 21 December; summer solstice is near 21 June, spring equinox is around 20 March and September equinox, autumnal equinox is about 22 or 23 September. In the Southern Hemisphere, the situation is reversed, with the summer and winter solstices exchanged and the spring and autumnal equinox dates swapped.
The angle of Earth's axial tilt is relatively stable over long periods of time. Its axial tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years.
The orientation (rather than the angle) of Earth's axis also changes over time, axial precession, precessing around in a complete circle over each 25,800-year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of the Sun and the Moon on Earth's equatorial bulge. The poles also migrate a few meters across Earth's surface. This polar motion has multiple, cyclical components, which collectively are termed quasiperiodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Chandler wobble. Earth's rotational velocity also varies in a phenomenon known as length-of-day variation.
In modern times, Earth's perihelion occurs around 3 January, and its aphelion around 4 July. These dates change over time due to precession and other orbital factors, which follow cyclical patterns known as Milankovitch cycles. The changing Earth-Sun distance causes an increase of about 6.8% in solar energy reaching Earth at perihelion relative to aphelion.
Because the Southern Hemisphere is tilted toward the Sun at about the same time that Earth reaches the closest approach to the Sun, the Southern Hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. This effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the Southern Hemisphere.
Earth–Moon system
Moon
The Moon is a relatively large, Terrestrial planet, terrestrial, Planetary-mass moon, planet-like natural satellite, with a diameter about one-quarter of Earth's. It is the largest moon in the Solar System relative to the size of its planet, although Charon (moon), Charon is larger relative to the dwarf planet Pluto. The natural satellites of other planets are also referred to as "moons", after Earth's. The most widely accepted theory of the Moon's origin, the giant-impact hypothesis, states that it formed from the collision of a Mars-size protoplanet called Theia with the early Earth. This hypothesis explains (among other things) the Moon's relative lack of iron and volatile elements and the fact that its composition is nearly identical to that of Earth's crust.
The gravitational attraction between Earth and the Moon causes
tide
Tides are the rise and fall of sea levels caused by the combined effects of the gravity, gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another.
Tide t ...
s on Earth. The same effect on the Moon has led to its tidal locking: its rotation period is the same as the time it takes to orbit Earth. As a result, it always presents the same face to the planet. As the Moon orbits Earth, different parts of its face are illuminated by the Sun, leading to the lunar phases. Due to their tidal interaction, the Moon recedes from Earth at the rate of approximately . Over millions of years, these tiny modifications—and the lengthening of Earth's day by about 23 Microsecond, µs/yr—add up to significant changes.
During the Ediacaran period, for example, (approximately ) there were 400±7 days in a year, with each day lasting 21.9±0.4 hours.
The Moon may have dramatically affected the development of life by moderating the planet's climate. Paleontology, Paleontological evidence and computer simulations show that Earth's axial tilt is stabilized by tidal interactions with the Moon.
Some theorists think that without this stabilization against the torques applied by the Sun and planets to Earth's equatorial bulge, the rotational axis might be chaotically unstable, exhibiting large changes over millions of years, as is the case for Mars, though this is disputed.
Viewed from Earth, the Moon is just far enough away to have almost the same apparent-sized disk as the Sun. The angular size (or solid angle) of these two bodies match because, although the Sun's diameter is about 400 times as large as the Moon's, it is also 400 times more distant.
This allows total and annular solar eclipses to occur on Earth.
Asteroids and artificial satellites
Earth's Co-orbital configuration, co-orbital asteroids population consists of quasi-satellites, objects with a horseshoe orbit and Trojan (celestial body), trojans. There are at least five quasi-satellites, including 469219 Kamoʻoalewa.
A Earth trojan, trojan asteroid companion, , is Libration, librating around the leading Lagrangian point, Lagrange triangular point, L4, in Earth's orbit around the Sun.
The tiny near-Earth asteroid makes close approaches to the Earth–Moon system roughly every twenty years. During these approaches, it can orbit Earth for brief periods of time.
, there are 4,550 operational, human-made satellites orbiting Earth.
There are also inoperative satellites, including Vanguard 1, the oldest satellite currently in orbit, and over 16,000 pieces of tracked space debris.
Earth's largest artificial satellite is the International Space Station.
Hydrosphere
Earth's hydrosphere consists chiefly of the oceans, but technically includes all water surfaces in the world, including inland seas, lakes, rivers, and underground waters down to a depth of . The mass of the oceans is approximately 1.35 metric tons or about 1/4400 of Earth's total mass. The oceans cover an area of with a mean depth of , resulting in an estimated volume of .
If all of Earth's crustal surface were at the same elevation as a smooth sphere, the depth of the resulting world ocean would be . About 97.5% of the water is saline water, saline; the remaining 2.5% is fresh water. Most fresh water, about 68.7%, is present as ice in ice caps and glaciers.
In Earth's coldest regions, snow survives over the summer and Ice formation, changes into ice. This accumulated snow and ice eventually forms into glaciers, bodies of ice that flow under the influence of their own gravity. Alpine glaciers form in mountainous areas, whereas vast ice sheets form over land in polar regions. The flow of glaciers erodes the surface changing it dramatically, with the formation of U-shaped valleys and other landforms. Sea ice in the Arctic covers an area about as big as the United States, although it is quickly retreating as a consequence of climate change.
The average salinity of Earth's oceans is about 35 grams of salt per kilogram of seawater (3.5% salt).
Most of this salt was released from volcanic activity or extracted from cool igneous rocks.
The oceans are also a reservoir of dissolved atmospheric gases, which are essential for the survival of many aquatic life forms.
Sea water has an important influence on the world's climate, with the oceans acting as a large heat reservoir.
Shifts in the oceanic temperature distribution can cause significant weather shifts, such as the El Niño–Southern Oscillation.
The abundance of water on Earth's surface is a unique feature that distinguishes it from other planets in the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. Solar System planets with considerable atmospheres do partly host atmospheric water vapor, but they lack surface conditions for stable surface water.
Despite some Natural satellite, moons showing signs of large reservoirs of extraterrestrial liquid water, with possibly even more volume than Earth's ocean, all of them are List of largest lakes and seas in the Solar System, large bodies of water under a kilometers thick frozen surface layer.
Atmosphere
The atmospheric pressure at Earth's sea level averages ,
with a scale height of about .
A dry atmosphere is composed of 78.084%
nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, 20.946% oxygen, 0.934% argon, and trace amounts of carbon dioxide and other gaseous molecules.
Water vapor
(99.9839 °C)
, -
, Boiling point
,
, -
, specific gas constant
, 461.5 J/( kg·K)
, -
, Heat of vaporization
, 2.27 MJ/kg
, -
, Heat capacity
, 1.864 kJ/(kg·K)
Water vapor, water vapour or aqueous vapor is the gaseous pha ...
content varies between 0.01% and 4%
but averages about 1%.
Cloud cover, Clouds cover around two thirds of Earth's surface, more so over oceans than land.
The height of the troposphere varies with latitude, ranging between at the poles to at the equator, with some variation resulting from weather and seasonal factors.
Earth's
biosphere has significantly altered its Atmosphere of Earth, atmosphere. Oxygen evolution#Oxygen evolution in nature, Oxygenic photosynthesis evolved , oxygen catastrophe, forming the primarily nitrogen–oxygen atmosphere of today.
This change enabled the proliferation of aerobic organisms and, indirectly, the formation of the ozone layer due to the subsequent Ozone–oxygen cycle, conversion of atmospheric into . The ozone layer blocks ultraviolet solar radiation, permitting life on land.
Other atmospheric functions important to life include transporting water vapor, providing useful gases, causing small meteors to burn up before they strike the surface, and moderating temperature.
This last phenomenon is the greenhouse effect: trace molecules within the atmosphere serve to capture thermal energy emitted from the surface, thereby raising the average temperature. Water vapor, carbon dioxide, methane, nitrous oxide, and ozone are the primary greenhouse gases in the atmosphere. Without this heat-retention effect, the average surface temperature would be , in contrast to the current ,
and life on Earth probably would not exist in its current form.
Weather and climate
Earth's atmosphere has no definite boundary, gradually becoming thinner and fading into outer space. Three-quarters of the atmosphere's mass is contained within the first of the surface; this lowest layer is called the troposphere. Energy from the Sun heats this layer, and the surface below, causing expansion of the air. This lower-density air then rises and is replaced by cooler, higher-density air. The result is atmospheric circulation that drives the weather and climate through redistribution of thermal energy.
The primary atmospheric circulation bands consist of the trade winds in the equatorial region below 30° latitude and the westerlies in the mid-latitudes between 30° and 60°.
Ocean heat content and Ocean current, currents are also important factors in determining climate, particularly the thermohaline circulation that distributes thermal energy from the equatorial oceans to the polar regions.
Earth receives 1361 W/m
2 of solar irradiance. The amount of solar energy that reaches the Earth's surface decreases with increasing latitude. At higher latitudes, the sunlight reaches the surface at lower angles, and it must pass through thicker columns of the atmosphere. As a result, the mean annual air temperature at sea level decreases by about per degree of latitude from the equator.
Earth's surface can be subdivided into specific latitudinal belts of approximately homogeneous climate. Ranging from the equator to the polar regions, these are the Tropics, tropical (or equatorial), Subtropics, subtropical, temperate and Polar region, polar climates.
Further factors that affect a location's climates are its Continentality, proximity to oceans, the oceanic and atmospheric circulation, and topology. Places close to oceans typically have colder summers and warmer winters, due to the fact that oceans can store large amounts of heat. The wind transports the cold or the heat of the ocean to the land. Atmospheric circulation also plays an important role: San Francisco and Washington DC are both coastal cities at about the same latitude. San Francisco's climate is significantly more moderate as the prevailing wind direction is from sea to land. Finally, temperatures Lapse rate, decrease with height causing mountainous areas to be colder than low-lying areas.
Water vapor generated through surface evaporation is transported by circulatory patterns in the atmosphere. When atmospheric conditions permit an uplift of warm, humid air, this water condenses and falls to the surface as precipitation.
Most of the water is then transported to lower elevations by river systems and usually returned to the oceans or deposited into lakes. This water cycle is a vital mechanism for supporting life on land and is a primary factor in the erosion of surface features over geological periods. Precipitation patterns vary widely, ranging from several meters of water per year to less than a millimeter. Atmospheric circulation, topographic features, and temperature differences determine the average precipitation that falls in each region.
The commonly used Köppen climate classification system has five broad groups (tropical climate, humid tropics, arid, humid subtropical climate, humid middle latitudes, Continental climate, continental and cold polar climate, polar), which are further divided into more specific subtypes.
The Köppen system rates regions based on observed temperature and precipitation. Surface Highest temperature recorded on Earth, air temperature can rise to around in hot deserts, such as Death Valley National Park, Death Valley, and Lowest temperature recorded on Earth, can fall as low as in
Antarctica
Antarctica () is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest contine ...
.
Upper atmosphere
The upper atmosphere, the atmosphere above the troposphere, is usually divided into the stratosphere, mesosphere, and thermosphere.
Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the geomagnetic fields interact with the solar wind.
Within the stratosphere is the ozone layer, a component that partially shields the surface from ultraviolet light and thus is important for life on Earth. The Kármán line, defined as above Earth's surface, is a working definition for the boundary between the atmosphere and outer space.
Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity. This causes a slow but steady Atmospheric escape, loss of the atmosphere into space. Because unfixed hydrogen has a low molecular mass, it can achieve escape velocity more readily, and it leaks into outer space at a greater rate than other gases.
The leakage of hydrogen into space contributes to the shifting of Earth's atmosphere and surface from an initially redox, reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is thought to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere.
Hence the ability of hydrogen to escape from the atmosphere may have influenced the nature of life that developed on Earth.
In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.
Life on Earth
Earth is the only known place that is Planetary habitability, habitable and has hosted life. Earth's life developed in Earth's early bodies of water some hundred million years after Earth formed.
Earth's life has been shaping and inhabiting many particular ecosystems on Earth and has eventually expanded globally forming an overarching
biosphere. Therefore, life has impacted Earth, significantly altering Earth's atmosphere and surface over long periods of time, causing changes like the Great oxidation event.
Earth's life has over time greatly diversified, allowing the biosphere to have different biomes, which are inhabited by comparatively similar plants and animals. The different biomes develope at distinct elevations or Ocean depths, water depths, planetary temperature latitudes and on land also with different humidity. Latitudinal gradients in species diversity, Earth's species diversity and Biomass (ecology), biomass reaches a peak in shallow waters and with tropical rainforest, forests, particularly in equatorial, warm and humid conditions. While freezing Polar regions of Earth, polar regions and Alpine tundra, high altitudes, or desert, extremely arid areas are relatively barren of plant and animal life.
Earth provides liquid water—an environment where complex Organic compound, organic molecules can assemble and interact, and sufficient energy to sustain a metabolism.
Plants and other organisms take up nutrients from water, soils and the atmosphere. These nutrients are constantly recycled between different species.
Extreme weather, such as tropical cyclones (including hurricanes and typhoons), occurs over most of Earth's surface and has a large impact on life in those areas. From 1980 to 2000, these events caused an average of 11,800 human deaths per year. Many places are subject to earthquakes, landslides, tsunamis, volcanic eruptions, tornadoes, blizzards, floods, droughts, wildfires, and other calamities and disasters. Human impact is felt in many areas due to pollution of the air and water, acid rain, loss of vegetation (overgrazing, deforestation, desertification), loss of wildlife, species extinction, soil degradation, soil depletion and erosion. Human activities release greenhouse gases into the atmosphere which cause global warming.
This is driving Effects of climate change, changes such as the Retreat of glaciers since 1850, melting of glaciers and ice sheets, a Sea level rise, global rise in average sea levels, increased risk of drought and wildfires, and migration of species to colder areas.
Human geography
Originating from earlier primates in eastern Africa 300,000 years ago History of human migration, humans have since been migrating and with the advent of agriculture in the 10th millennium BC increasingly Sedentism, settling Earth's land. In the 20th century
Antarctica
Antarctica () is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest contine ...
had been the last continent to see a first and until today limited human presence.
World population, Human population has since the 19th century grown exponentially to seven billion in the early 2010s, and is projected to peak at around ten billion in the second half of the 21st century.
Most of the growth is expected to take place in sub-Saharan Africa.
Distribution and Population density#Human population density, density of human population varies greatly around the world with the majority living in south to eastern Asia and 90% inhabiting only the Northern Hemisphere of Earth, partly due to the Land hemisphere, hemispherical predominance of the world's land mass, with 68% of the world's land mass being in the Northern Hemisphere. Furthermore, since the 19th century humans have increasingly converged into urban areas with the majority living in urban areas by the 21st century.
Beyond Earth's surface humans have lived on a temporary basis, with only special purpose deep underground living, underground and underwater living, underwater presence, and a few space stations. Human population virtually completely remains on Earth's surface, fully depending on Earth and the environment it sustains. Humans have gone and temporarily stayed beyond Earth with some hundreds of people, since the latter half of the 20th century, and only a fraction of them reaching another celestial body, the Moon.
Humans have developed diverse Society, societies and cultures, which have marked Earth significantly. Earth has been the claim of extensive human sedetary, extractive and political activity. Earth's land has been mostly territorially claimed since the 19th century by State (polity), states, of which today List of sovereign states, more than 200 exist, with only Antarctica and few Terra nullius, areas remaining unclaimed. Most of these states together form the United Nations, the leading worldwide intergovernmental organization, with international governance having provided legal regimes extraterritorially, extanding human governance Law of the Sea, over the ocean and Antarctic Treaty System, Antarctica, and therefore all of Earth.
Natural resources and land use
Earth has resources that have been exploited by humans. Those termed non-renewable resources, such as fossil fuels, are only replenished over geological timescales. Large deposits of fossil fuels are obtained from Earth's crust, consisting of coal, petroleum, and natural gas. These deposits are used by humans both for energy production and as feedstock for chemical production. Mineral ore bodies have also been formed within the crust through a process of ore genesis, resulting from actions of magmatism, erosion, and plate tectonics. These metals and other elements are extracted by mining, a process which often brings environmental and health damage.
Earth's biosphere produces many useful biological products for humans, including food, wood, pharmaceuticals, oxygen, and the recycling of organic waste. The land-based ecosystem depends upon topsoil and fresh water, and the oceanic ecosystem depends on dissolved nutrients washed down from the land.
In 2019, of Earth's land surface consisted of forest and woodlands, was shrub and grassland, were used for animal feed production and grazing, and were cultivated as croplands.
Of the 1214% of ice-free land that is used for croplands, 2 percentage points were irrigated in 2015.
Humans use building materials to construct shelters.
Humans and the environment
Human activities have impacted Earth's environments. Through activities such as the burning of fossil fuels, humans have been increasing the amount of
greenhouse gas
A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
es in the atmosphere, altering Earth's energy budget and climate.
[ It is estimated that global temperatures in the year 2020 were warmer than the preindustrial baseline. This increase in temperature, known as global warming, has contributed to the Retreat of glaciers since 1850, melting of glaciers, Sea level rise, rising sea levels, increased risk of drought and wildfires, and migration of species to colder areas.]
The concept of planetary boundaries was introduced to quantify humanity's impact on Earth. Of the nine identified boundaries, five have been crossed: Biodiversity loss, Biosphere integrity, climate change, chemical pollution, destruction of wild habitats and the nitrogen cycle are thought to have passed the safe threshold. As of 2018, no country meets the basic needs of its population without transgressing planetary boundaries. It is thought possible to provide all basic physical needs globally within sustainable levels of resource use.
Cultural and historical viewpoint
Culture, Human cultures have developed many views of the planet. The standard Astronomical symbols, astronomical symbols of Earth are a quartered circle, , representing the four corners of the world, and a globus cruciger, . Earth is sometimes Personification, personified as a deity. In many cultures it is a mother goddess that is also the primary fertility deity. Creation myths in many religions involve the creation of Earth by a supernatural deity or deities. The Gaia hypothesis
The Gaia hypothesis (), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that help ...
, developed in the mid-20th century, compared Earth's environments and life as a single self-regulating organism leading to broad stabilization of the conditions of habitability.
Timeline of first images of Earth from space, Images of Earth taken from space, particularly during the Apollo program, have been credited with altering the way that people viewed the planet that they lived on, called the overview effect, emphasizing its beauty, uniqueness and apparent fragility. In particular, this caused a realization of the scope of effects from human activity on Earth's environment. Enabled by science, particularly Earth observation, humans have started to take Environmentalism, action on environmental issues globally, acknowledging the impact of humans and the Ecological network, interconnectedness of Earth's environments.
Scientific investigation has resulted in several culturally transformative shifts in people's view of the planet. Initial belief in a flat Earth was gradually displaced in Ancient Greece by the idea of a spherical Earth, which was attributed to both the philosophers Pythagoras and Parmenides. Earth was generally believed to be Geocentric model, the center of the universe until the 16th century, when scientists first concluded that it was heliocentrism, a moving object, one of the planets of the Solar System.
It was only during the 19th century that geologists realized Earth's age was at least many millions of years. William Thomson, 1st Baron Kelvin, Lord Kelvin used thermodynamics to estimate the age of Earth to be between 20 million and 400 million years in 1864, sparking a vigorous debate on the subject; it was only when radioactivity and Radiometric dating, radioactive dating were discovered in the late 19th and early 20th centuries that a reliable mechanism for determining Earth's age was established, proving the planet to be billions of years old.
See also
Notes
References
External links
Earth – Profile
– Solar System Exploration – NASA
Earth Observatory
– NASA
* Earth – Videos – International Space Station:
*
Video (01:02)
– Earth (time-lapse)
*
Video (00:27)
– Earth and auroras (time-lapse)
Google Earth 3D
interactive map
Interactive 3D visualization of the Sun, Earth and Moon system
GPlates Portal
(University of Sydney)
{{Authority control
Earth,
Astronomical objects known since antiquity
Global natural environment
Planets in the circumstellar habitable zone
Nature
Planets of the Solar System
Terrestrial planets