EMC Effect
   HOME

TheInfoList



OR:

The EMC effect is the surprising observation that the cross section for
deep inelastic scattering Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the realit ...
from an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
is different from that of the same number of free
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s (collectively referred to as
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s). From this observation, it can be inferred that the
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
momentum distributions in nucleons bound inside nuclei are different from those of free nucleons. This effect was first observed in 1983 at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
by the
European Muon Collaboration The European Muon Collaboration (EMC) was formed in 1973 to study the interactions of high energy muons at CERN. These experiments were motivated by the interest in determining the quark structure of the nucleon following the discovery of high leve ...
, hence the name "EMC effect". It was unexpected, since the average binding energy of protons and neutrons inside nuclei is insignificant when compared to the energy transferred in deep inelastic scattering reactions that probe quark distributions. While over 1000 scientific papers have been written on the topic and numerous hypotheses have been proposed, no definitive explanation for the cause of the effect has been confirmed. Determining the origin of the EMC effect is one of the major unsolved problems in the field of
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies t ...
.


Background

Proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s, collectively referred to as
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s, are the constituents of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, and nuclear matter such as that in
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s. Protons and neutrons themselves are composite particles made up of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
s and
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind ...
s, a discovery made at
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departme ...
in the late 1960s using
deep inelastic scattering Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the realit ...
(DIS) experiments ( 1990 Nobel Prize). In the DIS reaction, a probe (typically an accelerated
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
) scatters from an individual quark inside a nucleon. By measuring the cross section of the DIS process, the distribution of quarks inside the nucleon can be determined. These distributions are effectively functions of a single variable, known as Bjorken-, which is a measure of the fraction of the momentum of the quark stricken by the electron. Experiments using DIS from protons by electrons and other probes have allowed physicists to measure the proton's quark distribution over a wide range of Bjorken-, i.e. the probability of finding a quark with momentum fraction in the proton. Experiments using
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
and
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (the most common isotope, helium-4, having two protons and two neutrons in contrast). Other than protium (ordinary hydrogen), helium-3 is the ...
targets have similarly allowed physicists to determine the quark distribution of the neutron.


Experimental history

In 1983, the
European Muon Collaboration The European Muon Collaboration (EMC) was formed in 1973 to study the interactions of high energy muons at CERN. These experiments were motivated by the interest in determining the quark structure of the nucleon following the discovery of high leve ...
published results from an experiment conducted at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
in which the DIS reaction was measured for high-energy
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As w ...
scattering from iron and deuterium targets. It was expected that the cross section for DIS from iron divided by that from deuterium, and scaled by a factor of 28 (the
iron-56 Iron-56 (56Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. ...
nucleus has 28 times more nucleons than deuterium) would be approximately 1. Instead, the data (Fig. 1) showed a decreasing slope in the region of reaching a minimum of 0.85 at the largest values of  . This decreasing slope is a hallmark of the EMC effect. The slope of this cross section ratio between is often referred to as the "size of the EMC effect" for a given nucleus. Since that landmark discovery, the EMC effect has been measured over a wide range of nuclei, at several different laboratories, and with multiple different probes. Notable examples include: * The E139 experiment at
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departme ...
, which measured the EMC effect in natural He, Be, C, Al, Ca, Fe, Ag, and Au, and found that the EMC effect increases with nuclear size. * The CLAS-EG2 experiment at Jefferson Lab measured the EMC effect and SRC abundances simultaneously in C, Al, Fe, and Pb, discovering a universal modification function of nucleons in SRC pairs that can explain the EMC effect in all measured nuclei. * The E03-103 experiment at Jefferson Lab focused on high-precision measurements of light nuclei and found that the size of the effect scales with local nuclear density rather than average nuclear density. * The NA37 experiment of the New Muon Collaboration (NMC) at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
.


Possible explanations

The EMC effect is surprising because of the difference in energy scales between nuclear binding and deep inelastic scattering. Typical binding energies for nucleons in nuclei are on the order of 10 megaelectron volts (MeV). Typical energy transfers in DIS are on the order of several gigaelectron volts (GeV). Nuclear binding effects were therefore believed to be insignificant when measuring quark distributions. A number of hypotheses for the cause of the EMC effect have been offered. While many older hypotheses, such as Fermi motion (see Fig. 2), nuclear
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s, and others have been ruled out by electron scattering or Drell–Yan data, modern hypotheses generally fall into two viable categories: mean-field modification, and short-range correlated pairs.


Mean-field modification

The mean-field modification hypothesis suggests that the nuclear environment leads to a modification of nucleon structure. As an illustration, consider that the average density inside a nuclear matter is approximately 0.16 nucleons per fm3. If nuclei were hard spheres, their radius would be approximately 1.1 fm, leading to a density of only 0.13 nucleons per fm3, assuming ideal close-packing. Nuclear matter is dense, and the close proximity of nucleons may allow quarks in different nucleons to interact directly, leading to nucleon modification. Mean-field models predict that all nucleons experience some degree of structure modification, and they are consistent with the observation that the EMC effect increases with nuclear size, scales with local density, and saturates for very large nuclei. Furthermore, mean-field models also predict a large “polarized EMC effect”: a large modification of the spin-dependent structure function for nuclei relative to that of their constituent protons and neutrons. This prediction will be tested experimentally using measurements of a polarized Li-7 target as part of the Jefferson Lab CLAS-12 program.


Short-range correlations (SRC)

Rather than all nucleons experiencing some modification, the '' short-range correlations hypothesis'' predicts that most nucleons at any one time are unmodified, but some are substantially modified. The most heavily modified nucleons are those in temporary short-range correlated (SRC) pairs. It has been observed that approximately 20% of nucleons (in medium and heavy nuclei) at any given moment are part of short-lived pairs with significant spatial overlap with a partner nucleon. The nucleons in these pairs then recoil apart with large back-to-back momenta of several hundred MeV/ – larger than the nuclear
Fermi momentum The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature. In a Fermi ga ...
– making them the highest-momentum nucleons in the nucleus. In the short-range correlations (SRC) hypothesis, the EMC effect emerges from large modification of these high-momentum SRC nucleons. This explanation is supported by the observation that the size of the EMC effect in different nuclei correlates linearly with the density of SRC pairs. This hypothesis predicts increasing modification as a function of nucleon momentum, which was tested using recoil-tagging techniques in experiments at Jefferson Lab. The results showed definitive evidence in favor of SRC.


References

{{reflist, 25em Quantum chromodynamics CERN Unsolved problems in physics