Direct sum of topological groups
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
G is called the topological direct sum of two
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s H_1 and H_2 if the map \begin H_1\times H_2 &\longrightarrow G \\ (h_1,h_2) &\longmapsto h_1 h_2 \end is a topological isomorphism, meaning that it is a
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
and a
group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
.


Definition

More generally, G is called the direct sum of a finite set of
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s H_1, \ldots, H_n of the map \begin \prod^n_ H_i &\longrightarrow G \\ (h_i)_ &\longmapsto h_1 h_2 \cdots h_n \end is a topological isomorphism. If a topological group G is the topological direct sum of the family of subgroups H_1, \ldots, H_n then in particular, as an abstract group (without topology) it is also the
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
(in the usual way) of the family H_i.


Topological direct summands

Given a topological group G, we say that a subgroup H is a topological direct summand of G (or that splits topologically from G) if and only if there exist another subgroup K \leq G such that G is the direct sum of the subgroups H and K. A the subgroup H is a topological direct summand if and only if the extension of topological groups 0 \to H\stackrel G\stackrel G/H\to 0 splits, where i is the natural inclusion and \pi is the natural projection.


Examples

Suppose that G is a locally compact abelian group that contains the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
\mathbb as a subgroup. Then \mathbb is a topological direct summand of G. The same assertion is true for the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
\RArmacost, David L. The structure of locally compact abelian groups. Monographs and Textbooks in Pure and Applied Mathematics, 68. Marcel Dekker, Inc., New York, 1981. vii+154 pp. MR0637201 (83h:22010).


See also

* * *


References

{{TopologicalVectorSpaces Topological groups Topology