HOME

TheInfoList



OR:

In the theory of quantum chromodynamics, dual superconductor models attempt to explain confinement of quarks in terms of an electromagnetic dual theory of superconductivity.


Overview

In an electromagnetic dual theory the roles of
electric Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by ...
and magnetic fields are interchanged. The
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
of superconductivity explains superconductivity as the result of the condensation of electric charges to
Cooper pair In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
s. In a dual superconductor an analogous effect occurs through the condensation of magnetic charges (also called
magnetic monopole In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magneti ...
s). In ordinary electromagnetic theory, no monopoles have been shown to exist. However, in quantum chromodynamics — the theory of
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
which explains the strong interaction between quarks — the color charges can be viewed as (non-abelian) analogues of electric charges and corresponding magnetic monopoles are known to exist. Dual superconductor models posit that condensation of these magnetic monopoles in a superconductive state explains color confinement — the phenomenon that only neutrally colored bound states are observed at low energies. Qualitatively, confinement in dual superconductor models can be understood as a result of the dual to the
Meissner effect The Meissner effect (or Meissner–Ochsenfeld effect) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. This expulsion will repel a ne ...
. The Meissner effect says that a superconducting metal will try to expel
magnetic field line A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s from its interior. If a magnetic field is forced to run through the superconductor, the field lines are compressed in magnetic flux "tubes" known as fluxons. In a dual superconductor the roles of magnetic and electric fields are exchanged and the Meissner effect tries to expel electric field lines. Quarks and antiquarks carry opposite color charges, and for a quark–antiquark pair 'electric' field lines run from the quark to the antiquark. If the quark–antiquark pair are immersed in a dual superconductor, then the electric field lines get compressed to a flux tube. The energy associated to the tube is proportional to its length, and the potential energy of the quark–antiquark is proportional to their separation. The potential energy of colored objects becomes infinite in the limit of large separation, all else being equal, though in reality, when it becomes large enough to form a new quark-anti-quark pair from the vacuum, these split the flux tube and bind to the original anti-quark and quark. A quark–antiquark will therefore always bind regardless of their separation, which explains why no unbound quarks are ever found. Dual superconductors are described by (a dual to) the Landau–Ginzburg model, which is equivalent to the
Abelian Higgs model In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other be ...
. The
MIT bag model The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the m ...
boundary conditions for gluon fields are those of the dual color superconductor. The dual superconductor model is motivated by several observations in calculations using
lattice gauge theory In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum elec ...
. The model, however, also has some shortcomings. In particular, although it confines colored quarks, it fails to confine color of some gluons, allowing colored bound states at energies observable in
particle collider A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators. Colliders are used as a research tool in particle ...
s.


Notes


References

*


See also

*
QCD vacuum In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
*
Maximum Abelian gauge In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
Gauge theories Quantum chromodynamics {{Quantum-stub