Dual Superconducting Model
   HOME

TheInfoList



OR:

In the theory of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, dual superconductor models attempt to explain confinement of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s in terms of an electromagnetic dual theory of
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
.


Overview

In an electromagnetic dual theory the roles of
electric Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
and
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s are interchanged. The
BCS theory In physics, the Bardeen–Cooper–Schrieffer (BCS) theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory descr ...
of superconductivity explains superconductivity as the result of the condensation of electric charges to
Cooper pair In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Cooper. ...
s. In a dual superconductor an analogous effect occurs through the condensation of magnetic charges (also called
magnetic monopole In particle physics, a magnetic monopole is a hypothetical particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". ...
s). In ordinary electromagnetic theory, no monopoles have been shown to exist. However, in quantum chromodynamics — the theory of
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). Like electric charge, it determines how quarks and gluons interact through the strong force; ho ...
which explains the
strong interaction In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
between quarks — the color charges can be viewed as (non-abelian) analogues of electric charges and corresponding magnetic monopoles are known to exist. Dual superconductor models posit that condensation of these magnetic monopoles in a superconductive state explains color confinement — the phenomenon that only neutrally colored bound states are observed at low energies. Qualitatively, confinement in dual superconductor models can be understood as a result of the dual to the
Meissner effect In condensed-matter physics, the Meissner effect (or Meißner–Ochsenfeld effect) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. Th ...
. The Meissner effect says that a superconducting metal will try to expel
magnetic field line A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s from its interior. If a magnetic field is forced to run through the superconductor, the field lines are compressed in magnetic flux "tubes" known as fluxons. In a dual superconductor the roles of magnetic and electric fields are exchanged and the Meissner effect tries to expel electric field lines. Quarks and antiquarks carry opposite color charges, and for a quark–antiquark pair 'electric' field lines run from the quark to the antiquark. If the quark–antiquark pair are immersed in a dual superconductor, then the electric field lines get compressed to a flux tube. The energy associated to the tube is proportional to its length, and the potential energy of the quark–antiquark is proportional to their separation. The potential energy of colored objects becomes infinite in the limit of large separation, all else being equal, though in reality, when it becomes large enough to form a new quark-anti-quark pair from the vacuum, these split the flux tube and bind to the original anti-quark and quark. A quark–antiquark will therefore always bind regardless of their separation, which explains why no unbound quarks are ever found. Dual superconductors are described by (a dual to) the Landau–Ginzburg model, which is equivalent to the Abelian Higgs model. The MIT bag model boundary conditions for gluon fields are those of the dual color superconductor. The dual superconductor model is motivated by several observations in calculations using
lattice gauge theory In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum ele ...
. The model, however, also has some shortcomings. In particular, although it confines colored quarks, it fails to confine color of some
gluon A gluon ( ) is a type of Massless particle, massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a Spin (physi ...
s, allowing colored bound states at energies observable in
particle collider In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, fro ...
s.


Notes


References

*


See also

* QCD vacuum * Maximum Abelian gauge Gauge theories Quantum chromodynamics {{Quantum-stub