HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a line bundle expresses the concept of a
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
that varies from point to point of a space. For example, a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
in the plane having a tangent line at each point determines a varying line: the '' tangent bundle'' is a way of organising these. More formally, in algebraic topology and
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
, a line bundle is defined as a '' vector bundle'' of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane yields the 1×1 invertible complex matrices, which have the homotopy type of a circle. From the perspective of
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topolog ...
, a real line bundle therefore behaves much the same as a
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
with a two-point fiber, that is, like a double cover. A special case of this is the orientable double cover of a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
, where the corresponding line bundle is the determinant bundle of the tangent bundle (see below). The
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and Augu ...
corresponds to a double cover of the circle (the θ → 2θ mapping) and by changing the fiber, can also be viewed as having a two-point fiber, the unit interval as a fiber, or the real line. Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres. In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, an invertible sheaf (i.e., locally free sheaf of rank one) is often called a line bundle. Every line bundle arises from a divisor with the following conditions (I) If ''X'' is reduced and irreducible scheme, then every line bundle comes from a divisor. (II) If ''X'' is projective scheme then the same statement holds.


The tautological bundle on projective space

One of the most important line bundles in algebraic geometry is the tautological line bundle on
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
. The projectivization P(''V'') of a vector space ''V'' over a field ''k'' is defined to be the quotient of V \setminus \ by the action of the multiplicative group ''k''×. Each point of P(''V'') therefore corresponds to a copy of ''k''×, and these copies of ''k''× can be assembled into a ''k''×-bundle over P(''V''). ''k''× differs from ''k'' only by a single point, and by adjoining that point to each fiber, we get a line bundle on P(''V''). This line bundle is called the tautological line bundle. This line bundle is sometimes denoted \mathcal(-1) since it corresponds to the dual of the Serre twisting sheaf \mathcal(1).


Maps to projective space

Suppose that ''X'' is a space and that ''L'' is a line bundle on ''X''. A global section of ''L'' is a function such that if is the natural projection, then = id''X''. In a small neighborhood ''U'' in ''X'' in which ''L'' is trivial, the total space of the line bundle is the product of ''U'' and the underlying field ''k'', and the section ''s'' restricts to a function . However, the values of ''s'' depend on the choice of trivialization, and so they are determined only up to multiplication by a nowhere-vanishing function. Global sections determine maps to projective spaces in the following way: Choosing not all zero points in a fiber of ''L'' chooses a fiber of the tautological line bundle on P''r'', so choosing non-simultaneously vanishing global sections of ''L'' determines a map from ''X'' into projective space P''r''. This map sends the fibers of ''L'' to the fibers of the dual of the tautological bundle. More specifically, suppose that are global sections of ''L''. In a small neighborhood ''U'' in ''X'', these sections determine ''k''-valued functions on ''U'' whose values depend on the choice of trivialization. However, they are determined up to ''simultaneous'' multiplication by a non-zero function, so their ratios are well-defined. That is, over a point ''x'', the values are not well-defined because a change in trivialization will multiply them each by a non-zero constant λ. But it will multiply them by the ''same'' constant λ, so the homogeneous coordinates 's''0(''x'') : ... : ''s''''r''(''x'')are well-defined as long as the sections do not simultaneously vanish at ''x''. Therefore, if the sections never simultaneously vanish, they determine a form 's''0 : ... : ''s''''r''which gives a map from ''X'' to P''r'', and the pullback of the dual of the tautological bundle under this map is ''L''. In this way, projective space acquires a universal property. The universal way to determine a map to projective space is to map to the projectivization of the vector space of all sections of ''L''. In the topological case, there is a non-vanishing section at every point which can be constructed using a bump function which vanishes outside a small neighborhood of the point. Because of this, the resulting map is defined everywhere. However, the codomain is usually far, far too big to be useful. The opposite is true in the algebraic and holomorphic settings. Here the space of global sections is often finite dimensional, but there may not be any non-vanishing global sections at a given point. (As in the case when this procedure constructs a
Lefschetz pencil In mathematics, a Lefschetz pencil is a construction in algebraic geometry considered by Solomon Lefschetz, used to analyse the algebraic topology of an algebraic variety ''V''. Description A ''pencil'' is a particular kind of linear system of d ...
.) In fact, it is possible for a bundle to have no non-zero global sections at all; this is the case for the tautological line bundle. When the line bundle is sufficiently ample this construction verifies the Kodaira embedding theorem.


Determinant bundles

In general if ''V'' is a vector bundle on a space ''X'', with constant fibre dimension ''n'', the ''n''-th exterior power of ''V'' taken fibre-by-fibre is a line bundle, called the determinant line bundle. This construction is in particular applied to the
cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may ...
of a smooth manifold. The resulting determinant bundle is responsible for the phenomenon of tensor densities, in the sense that for an orientable manifold it has a nonvanishing global section, and its tensor powers with any real exponent may be defined and used to 'twist' any vector bundle by tensor product. The same construction (taking the top exterior power) applies to a finitely generated
projective module In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizati ...
''M'' over a Noetherian domain and the resulting invertible module is called the determinant module of ''M''.


Characteristic classes, universal bundles and classifying spaces

The first Stiefel–Whitney class classifies smooth real line bundles; in particular, the collection of (equivalence classes of) real line bundles are in correspondence with elements of the first cohomology with Z/2Z coefficients; this correspondence is in fact an isomorphism of abelian groups (the group operations being tensor product of line bundles and the usual addition on cohomology). Analogously, the first
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Y ...
classifies smooth complex line bundles on a space, and the group of line bundles is isomorphic to the second cohomology class with integer coefficients. However, bundles can have equivalent
smooth structure In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M i ...
s (and thus the same first Chern class) but different holomorphic structures. The Chern class statements are easily proven using the
exponential sequence In mathematics, the exponential sheaf sequence is a fundamental short exact sequence of sheaves used in complex geometry. Let ''M'' be a complex manifold, and write ''O'M'' for the sheaf of holomorphic functions on ''M''. Let ''O'M''* be th ...
of sheaves on the manifold. One can more generally view the classification problem from a homotopy-theoretic point of view. There is a universal bundle for real line bundles, and a universal bundle for complex line bundles. According to general theory about
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
s, the heuristic is to look for
contractible In mathematics, a topological space ''X'' is contractible if the identity map on ''X'' is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within th ...
spaces on which there are
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphi ...
s of the respective groups ''C''2 and ''S''1, that are free actions. Those spaces can serve as the universal
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
s, and the quotients for the actions as the classifying spaces ''BG''. In these cases we can find those explicitly, in the infinite-dimensional analogues of real and complex
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
. Therefore the classifying space ''BC''2 is of the homotopy type of RP, the real projective space given by an infinite sequence of homogeneous coordinates. It carries the universal real line bundle; in terms of homotopy theory that means that any real line bundle ''L'' on a
CW complex A CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead (open access) to meet the needs of homotopy theory. This cla ...
''X'' determines a ''classifying map'' from ''X'' to RP, making ''L'' a bundle isomorphic to the pullback of the universal bundle. This classifying map can be used to define the Stiefel-Whitney class of ''L'', in the first cohomology of ''X'' with Z/2Z coefficients, from a standard class on RP. In an analogous way, the complex projective space CP carries a universal complex line bundle. In this case classifying maps give rise to the first
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Y ...
of ''X'', in H2(''X'') (integral cohomology). There is a further, analogous theory with
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quat ...
ic (real dimension four) line bundles. This gives rise to one of the
Pontryagin class In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundle ...
es, in real four-dimensional cohomology. In this way foundational cases for the theory of
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic class ...
es depend only on line bundles. According to a general
splitting principle In mathematics, the splitting principle is a technique used to reduce questions about vector bundles to the case of line bundles. In the theory of vector bundles, one often wishes to simplify computations, say of Chern classes. Often computation ...
this can determine the rest of the theory (if not explicitly). There are theories of
holomorphic line bundle In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of ...
s on
complex manifold In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a ...
s, and
invertible sheaves In mathematics, an invertible sheaf is a coherent sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O'X''-modules. It is the equivalent in algebraic geometry of the topological notion ...
in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, that work out a line bundle theory in those areas.


See also

* I-bundle *
Ample line bundle In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ...


Notes


References

* Michael Murray
Line Bundles
2002 (PDF web link) * Robin Hartshorne.
Algebraic geometry
'. AMS Bookstore, 1975. {{DEFAULTSORT:Line Bundle Differential topology Algebraic topology Homotopy theory Vector bundles